Reconciling Concurrency Theory
with Other Branches of
Computer Science

Hubert Garavel
Inria Grenoble — LIG

and Saarland University (part-time)

http://convecs.inria.fr

Open Problems in Concurrenc y Theory Bertinoro (Italy), June 18-21, 2014

http://convecs.inria.fr/

Concurrency theory in 2014

m Scientifically relevant, but difficult to defend
» a rather mathematical branch of computer science

» economical impact difficult to assess
m Argument #1
» distributed computing is everywhere: from microarchitectures to the cloud
» concurrency theory helps to correctly design and verify complex systems
m Argument #2
» one lacks good languages to program parallel machines
» concurrency theory studies languages with native parallel composition
m Yet:

» students and engineers find process calculi difficult ("steep learning curve")

» academic colleagues do not spontaneously adopt process calculi

r d

: informatics #Fmathematics '

Outline

m LNT: a born-again process calculus
m Upward encodings

m Expressiveness / Convenience

m Conclusion

LNT: a born-again process calculus

r 4
: informatics #Fmathematics

Action prefix (1/2)

m A key operator of many process calculi:
a.P | alx.P |a?x.P withaaction, P process, x variable

m Advantages:
» well accepted by (most of) the concurrency theory community
» simple syntax
» simple SOS rules

» convenient for proofs

m Drawback #1: non-standard wrt other programming languages
» action prefix is asymmetric: a.P action a followed by a process P

» everywhere else: symmetric sequential composition
P, P" process P followed by another process P’

» students always tend to write symmetric sequential composition by default

r d

: informatics #Fmathematics '

Action prefix (2/2)

m Drawback #2: incompatible with regular expressions
» computer scientists know regular expressions (command shells, text editors)

» they naturally tend to write regular expressions, rather than prefix terms

m Drawback #3: no "loop" operator
» one is forced to use recursion and introduce extra processes

» many proposals for introducing loops, but few implementations (if any)

m Drawback #4: prohibits control-flow sharing
» action prefix forces to write trees and prohibits DAGs
» Ex1: (a.c.nil+b.c.nil) ratherthan (a+b).c.nil
» Ex2: if xthen (a.c.nil)else (b.c.nil) rather than (if x then a else b) . c . nil
» to avoid such undesirable unfoldings, one must introduce auxiliary processes

» but this is poorly readable control flow ("goto"-like programming)
and obscures the data flow (requires value parameters to be passed)

r d

: informatics #Fmathematics '

Attempt #1: LOTOS, CSP

m Action prefix was recognized to be insufficient as soon as 1985

m ldea: keep action prefix, add symmetric sequential composition
» noted ">>"in LOTOS and ;" in CSP

m Many drawbacks:

» two operators for almost the same purpose
Ex (LOTOS): a; b; exit>>c; d; stop
» each sequential composition >> creates a t-transition in the LTS
» no neutral element for sequential composition (modulo strong bisimulation)

» sub-term sharing for control flow is possible but heavy
(a; exit [] b; exit) >> c; stop

» In CSP, the values of variables do not move across sequential composition
(?x : T->SKIP) ; (x -> STOP) the left x remains local to (?x : T -> SKIP)

» In LOTOS, the values of variables may move across sequential composition
(Recv ?x:T; exit (x)) >> accept x:T in Send !x; stop ok, but awfully complex

r d

: informatics #Fmathematics '

Attempt #2: ACP & Co (PSF, uCRL, mCRL2)

m ldea: discard action prefix; use symmetric sequential composition

m Advantages (in absence of value passing)
» simplicity = — and no creation of extra t-transitions

» allows control-flow sharing
» subsumes regular expressions (and even context-free grammars)

m Drawbacks (all related to value passing)

» Input?x:Int ; Output !x ; exit cannot be written this way (i.e., as in LOTOS)
it must be written 2 (x:Int, Input (x) . Output (x)) =>no notation for input

» the value of x is not chosen during the input, but before (in the sum operator)

» ambiguous: no dedicated syntax to distinguish between inputs and outputs
> (x:Int, a (x)) can mean either a?x:Int; exit or choice x:Int [] a !x ; exit

» certain forms of control-flow sharing cannot be expressed in these languages
Ex: (@?x[]t;b?x);cl!x ..
where should the sum operator for "b ?x" be put?

r d

: informatics #Fmathematics '

Early conclusions
-

m CCS, CSP, LOTOS are not optimal for describing complex systems
m ACP & Co. do slightly better, but do not solve all issues
m A better language (named "LNT") has to be designed

m DECISION 1 for LNT:

» get rid of action prefix

» use ACP-style sequential composition

m Next step: find a proper solution for value-passing issues

» must be intuitive for mainstream software engineers
» thus, necessarily different from both CCS/CSP/LOTOS and ACP & Co.

r d

: informatics #Fmathematics '

Control-flow and data-flow sharing

m As mentioned before, control-flow sharing is intuitive and suitable

» Ex1: (A[lB);C nondeterministic choice
» Ex2: (ifxthenAelseB);C deterministic choice
» Ex3: (casexina->A|b->B);C deterministic choice

m The values of variables should implicitly move across ";" operators
» Ex4: (A?x[]B?x);Clx..
» Ex5: (ifcthen A?xelsex:=0);B Ix..
m |In most process calculi, variables are write-once
» they are so-called "dynamic constants”
» simple syntax: declaration and initialization of variables are bound together

» simple semantics: [value/variable] substitutions are sufficient

m But dynamic constants are not mainstream in computer languages

» they isolate process calculi from the crowd of software developers

r d

: informatics #Fmathematics '

Introducing "true" variables

m DECISION 2 FOR LNT:

» ordinary (i.e., "write-many") variables are suitable
» both in the data part (functions) and in the behavior part (processes)
» variable declarations and variable modifications need to be separated

B successive assignments to the same variable are permitted

m Variable declarations

» var X : Tin ... end var

m Variable modifications

» X:=E assignment
» G ?X where E (X) input with (optional) predicate
» X :=any T where E (X) nondeterministic assignment with predicate

» calls to functions and processes (Ada-like "in", "out", and "in out" parameters)

r d

: informatics #Fmathematics '

Uninitialized variables (1/2)

m Problem: certain syntactically correct terms have no clear meaning
» Ex: (A?x []B?y);CIx+y
» but this term becomes meaningful if prefixed with x:=0;y:=0

m Whether a term has a meaning or not is undecidable (= halting)
m Solution #1: reading uninitialized variables has undefined effects

» usual solution in imperative languages (as in C, etc.)
» unacceptable if a formal semantics is sought
m Solution #2: initialize all variables implicitly when they are declared
» e.g. set integers to zero, Booleans to false (as in Eiffel)
» allows formal semantics but hides user mistakes
m Solution #3: give uninitialized variables nondeterministic values
» tricky: implicit summation operator by reading an uninitialized variable

» allows formal semantics but hides user mistakes

r d

: informatics #Fmathematics '

Uninitialized variables (2/2)

m Solution #4: add restrictions to reject "dubious" programs
m Either using syntactic restrictions:

» CCS: asymmetric action prefix is just a means to avoid (a ?x+ b ?y). c Ix+y
» ACP: output-only syntax for actions is another means for the same issue

» syntactic restrictions are very primitive defense means; better solutions exist

m Or using static semantics restrictions:
» standard means to rule out syntactically correct, yet problematic programs

» process calculi neglect static semantics and try to do everything using syntax

m DECISION 3 FOR LNT: static semantics constraints on initializations
» reject programs in which variables are not provably set before used
» sufficient conditions based on static data-flow analysis
» inspired by the Hermes (IBM) and Java (Sun) languages

» well-accepted by programmers, catches many mistakes

r d

: informatics #Fmathematics '

"Context-free" recursion

B Symmetric sequential composition allows context-free recursion
» Example: processP = null [] (A;P;B)
» (note that action prefix syntactically prohibits this)

m Assessment:
» this recursion is not so useful in practice

» the same behaviour can be easily described using regular processes with
value parameters

m DECISION 4 for LNT: static semantic restrictions on recursion

» LNT processes: only tail-recursion is allowed
note: non-tail recursion could yet be eliminated automatically (e.g. uCRL)

» LNT functions: no restriction on the use of recursion

r d

: informatics #Fmathematics '

Shared variables

m Separation of declaration and assignment allows shared variables
» Example: var X:intin (Input ?X || Input ?X) ; Output !X
» (note that this is impossible when variables are write-once)

m Assessment

» This could be an opportunity to combine message-passing and shared-
variable paradigms in the same formal language

» A nice semantics could probably be found for shared variables
» For the moment, LNT remains in the message-passing framework

m DECISION 5 for LNT: static semantic restrictions on shared variables
» LNT parallel branches may inherit variables from their enclosing scope
» In principle, all parallel branches can read all shared variables

» If a branch writes a shared variable, the other branches can neither write
nor read this variable (i.e., exclusive write access policy)

r d

: informatics #Fmathematics '

Dynamic semantics of LNT

m Annex B of the LNT2LOTOS Reference Manual

» written by Frédéric Lang (16 pages)

» ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/Champelovier-Clerc-
Garavel-et-al-10.pdf

m For LNT functions:

» state = memory store (mapping: variable — value)
» LNT instructions define transitions between states (i.e., store updates)

m For LNT processes:
» Labelled transition systems
» LTS state = <process term, memory store>
» SOS rules define transitions between LTS states
» Sequential composition: ACP-like rules + store updates
» Static semantics restrictions avoid complications in the dynamic semantics

4
informatics ##mathematics '
éZ%a——— LI G

ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf
ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf

Upward encodings

4
informatics gFmathematics
6 Z’Z[a——— G

Encoding reg. exp. and ACP in LNT

m Regular expressions ------------- > LNT
£ null — but adds a tick V
a a — but adds a tick V
R1.R2 R1;R2
R1 | R2 select R1 [] R2 end select
R* loop R end loop
m ACP e > LNT
0) stop
1 null
2(x:T, P(x)) var x:Tinx:=any T, P (x) end var

Parallel composition and renaming are orthogonal issues

r d

informatics gFmathematics '
4 Zua—‘- LI G

Encoding CCS in LNT

m CCS e > LNT
nil stop
a.P a;P
alx.P a(x);P
a’xT.P var x:Tina (?x); P end var
P1+ P2 select P1 [] P2 end select

m Other CCS operators
» recursion: translates to either a loop operator or an LNT process call

» CCS "complement" gates, parallel and restriction are orthogonal issues

r d

Encoding LOTOS in LNT

m For those LOTOS operators that also exist in CCS:
» apply the same rules as for the CCS to LNT translation
» but LOTOS has additional operators that do not exist in CCS

m LOTOS - > LNT
G?x:T[V]inP var x:T in G (?x) where V ; P end var
letx:T=VinP var x:Tinx:=V ; P end var
choice x:T[] P varx:Tinx:=any T ; P end var
exit null
exit (V1, ..., Vn) null
P1>>P2 P1;t; P2
P1>>accept x:T in P2 P1;7t;P2 (where P1 assigns x)

r d

informatics #Fmathematics '

The quest for a unifying framework
for process calculi

m The usual approach
» search for a "core" calculus of very primitive elements
» try to express classical process calculi using this "core" calculus

» the core calculus is "low level", whereas the process calculi are "high level"

m LNT: a different approach
» translate classical process calculi to LNT
» the classical process calculi are "low level", whereas LNT is "high level"
» the translations to LNT are straightforward (i.e., "syntactical" substitutions)

» the classical process calculi appear as a "subset" or a particular "specification
style" of LNT, which is more general

r d

: informatics #Fmathematics '

Expressiveness / Convenience

r 4
: informatics #Fmathematics

Reusing algorithmic control structures

m Once symmetric sequential composition and "standard" value
passing rules are adopted, all the usual constructs of algorithmic
programming languages come "for free"

m In LNT, 70% of constructs look familiar (Ada-like syntax):
» if-then-else (with elsif)
» case with pattern matching
» while ... loop, for...loop, forever loop with break

» functions with return statement
» LNT functions and processes have many constructs in common

m Additional process constructs (coming from concurrency theory):
» nondeterministic assignment: X :=any T where P (X)
» nondeterministic choice: select ... [] ... [] ... end select

» parallel composition: par ... | |... || ... end par
» hiding: hide ... end hide

rd
: informatics #Fmathematics '

More flexible specification styles

m LNT favors alternatives to the traditional "condition/action" style

m A recent example:

select
L:={}
[1 L:={0, 1}

[1 L:={1,0, 2}

1 ..

end select ;

SEND (L);

while L !={} loop
X :=X-head (L);
L := tail (L)

end loop

nondeterministic choice used to
produce a finite set of values among
a potentially infinite domain

(there are no input/output actions in
the branches of this select statement)

L statically unbounded number of assignments

r d

Challenge 1: Guarded commands

m Proposed by Dijkstra — used, e.g., in the PRISM model checker
m LNT can express guarded commands naturally and concisely:
process GuardedCommands [G1, G2, ... Gn : void] is
var X1, X2, ... Xn:int in
X1:=0;X2:=0;..;Xn:=0
loop

select —_
only if X1 <9 then G1; X1 := X1+1 end if

[1...]
only if Xn <9 then Gn ; Xn := Xn+1 end if

end select Using traditional process calculi:

* 1 recursive process having n parameters

* n recursive process calls

* n? parameters passed (most of which unchanged)
end process e LNT = linear code size, others = quadratic code size

r 4
informatics gFmathematics '
4 Zua—‘- LI G

end loop

end var

Challenge 2: DAG control patterns

m LNT can directly express DAG-like control patterns:
» e.g., choice-DAGs: (P1[]P2);(Q1[]Q2); (R1[]R2)
» but also if-DAGs, case-DAGs, etc.

process DAG [Input, Output : IntChannel] (X1, ..., Xn : Int) is
if X1 = 0 then Input (?X1) end if ; B
if X2 =0 then Input (?X2) end if ;

if Xn = 0 then Input (?Xn) end if ;
Output (combination (X1, X2, ..., Xn))
<

end process Using traditional process calculi:
* n processes having n parameters each

* n? parameters passed
e LNT = linear code size, others = quadratic code size

e tedious and error prone

r 4
informatics gFmathematics '
4 Zua—‘- LI G

Challenge 3: Map-Reduce

m Given ninputs X1, X2, ..., Xn, compute g (f1 (X1), f2 (X2), ..., fn (Xn))
m Each computation Yi = fi (Xi) is given to one parallel processor

var Xl; le Xy) Xn . S) : Input ?Xl, X2, ceey Xn . S ;
Y1,Y2, ... Yn:Tin i (
1
Input (?X1, ?X2, ..., ?Xn); E exit (f1 (X1), any T, ..., any T)
par i || exit (any T, f2 (X2), ... any T)
Y1 :=f1(X1) i [..
1
|1Y2:=12(X2) E || exit (any T, any T, ..., fn (Xn))
Il ... I)
1
|| Yn :=fn (Xn) E >>accept Y1,Y2, .., Yn:Tin
end par ; E Output (g (Y1, Y2, ..., Yn))
Output (g (Y1, Y2, ..., Yn)) | endvar

end var
LNT = linear code size, LOTOS = quadratic code size, not compositional

r 4
informatics gFmathematics '
6 Z%a——— LI G

Conclusions

4
informatics gFmathematics
63’2‘&——— LI G

Revisiting classical process calculi

m Classical process calculi are good, yet not optimal
» they are difficult to learn and to master

» they face certain problems when scaling to large, complex systems
(prohibition of control-flow sharing, quadratic explosion of code size, etc.)

» a better tradeoff between convenience and semantic simplicity is possible

m A critical assessment of action prefix and write-once variables
» forcing write-once variables is simple, but overly restrictive and clumsy
» CCS action prefix is a "trick" to syntactically forbid write-many variables

» ACP output-only syntax is another trick to also forbid write-many variables

m Why are (most) process calculi designed like this?
» need for having a formal semantics (forbid uninitialized variables)
» individual preferences for functional languages, algebras, etc.
» ignores the difference between syntax checks and static semantics checks

» process calculi came too early: Hermes (1986-92) and Java (95) arrived later

r d

: informatics #Fmathematics '

LNT: an alternative approach

m Key concepts:

» remove action prefix
add sequential symmetric composition
separate variable declaration and modification
allow write-many variables

static semantics: use data flow analysis to reject dubious programs

¥y ¥ ¥y ¥v ¥

dynamic semantics: extend LTS states with memory stores

m Benefits:
» generalizes regular expressions and the usual calculi: ACP, CCS, CSP, LOTOS
» generalizes sequential imperative languages
» better convenience than the usual calculi (dags, map-reduce, etc.)

» supports action refinement (replacement of an action by a process)

r d

: informatics #Fmathematics '

Design and implementation of LNT

m First attempt: 1993-2000
» push ideas in the definition of E-LOTOS (I1SO standard 15435:2001)

m Second attempt: 1998-2008
» definition of LOTOS NT, a simplified version of E-LOTOS

» direct implementation : the TRAIAN compiler (data types only — C)
Mihaela Sighireanu's PhD thesis

m Third attempt: 2005-now
» indirect implementation: LNT — LOTOS (much harder than LOTOS — LNT)

» LNT2LOTOS translator (initially funded by Bull)
Frédéric Lang: translation of LNT types and functions
Wendelin Serwe: translation of LNT processes
D. Champelovier, X. Clerc, etc.: implementation of the translator

» reuse of the LOTOS compilers and verification tools present in CADP

m On the long run: resume direct implementation LNT — C

r d

: informatics #Fmathematics '

Feedback about LNT

m LNT is taught to engineering students
» LNT is much easier and faster to learn than LOTOS

» LNT builds on prior knowledge: regular expressions, programming languages
students don't have to forget what they already learnt in programming

courses
they can focus on concurrency theory concepts (choice, parallel, hide, etc.)

» because LNT is intuitive, students tend to jump writing specifications without
reading the formal semantics (a very questionable advantage!)

m LNT is used to model real-life applications
» since 2010, LNT has entirely replaced LOTOS in our research team

» a growing list of case-studies: ATVA'13, FMICS'13, FORTE'13, FORTE'14,
IFM'13, ISSE'13, SAC'14, TACAS'13, SCICO journal (2013 and 2014)

» STMicroelectronics: LNT enabled the development of hardware models that
were too large to be realistically described in LOTOS

r d

: informatics #Fmathematics '

	Reconciling Concurrency Theory with Other Branches of Computer Science
	Concurrency theory in 2014
	Outline
	LNT: a born-again process calculus
	Action prefix (1/2)
	Action prefix (2/2)
	Attempt #1: LOTOS, CSP
	Attempt #2: ACP & Co (PSF, CRL, mCRL2)
	Early conclusions
	Control-flow and data-flow sharing
	Introducing "true" variables
	Uninitialized variables (1/2)
	Uninitialized variables (2/2)
	"Context-free" recursion
	Shared variables
	Dynamic semantics of LNT
	Upward encodings
	Encoding reg. exp. and ACP in LNT
	Encoding CCS in LNT
	Encoding LOTOS in LNT
	The quest for a unifying framework for process calculi
	Expressiveness / Convenience
	Reusing algorithmic control structures
	More flexible specification styles
	Challenge 1: Guarded commands
	Challenge 2: DAG control patterns
	Challenge 3: Map-Reduce
	Conclusions
	Revisiting classical process calculi
	LNT: an alternative approach
	Design and implementation of LNT
	Feedback about LNT

