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2. Overall Objectives

2.1. Overview
The CONVECS project-team addresses the rigorous design of concurrent asynchronous systems using formal
methods and automated analysis. These systems comprise several activities that execute simultaneously
and autonomously (i.e., without the assumption about the existence of a global clock), synchronize, and
communicate to accomplish a common task. In computer science, asynchronous concurrency arises typically
in hardware, software, and telecommunication systems, but also in parallel and distributed programs.

Asynchronous concurrency is becoming ubiquitous, from the micro-scale of embedded systems (asynchronous
logic, networks-on-chip, GALS – Globally Asynchronous, Locally Synchronous systems, multi-core proces-
sors, etc.) to the macro-scale of grids and cloud computing. In the race for improved performance and lower
power consumption, computer manufacturers are moving towards asynchrony. This increases the complexity
of the design by introducing nondeterminism, thus requiring a rigorous methodology, based on formal methods
assisted by analysis and verification tools.

There exist several approaches to formal verification, such as theorem proving, static analysis, and model
checking, with various degrees of automation. When dealing with asynchronous systems involving complex
data types, verification methods based on state space exploration (reachability analysis, model checking,
equivalence checking, etc.) are today the most successful way to detect design errors that could not be
found otherwise. However, these verification methods have several limitations: they are not easily accepted
by industry engineers, they do not scale well while the complexity of designs is ever increasing, and they
require considerable computing power (both storage capacity and execution speed). These are the challenges
that CONVECS seeks to address.

To achieve significant impact in the design and analysis of concurrent asynchronous systems, several research
topics must be addressed simultaneously. There is a need for user-friendly, intuitive, yet formal specification
languages that will be attractive to designers and engineers. These languages should provide for both functional
aspects (as needed by formal verification) and quantitative ones (to enable performance evaluation and
architecture exploration). These languages and their associated tools should be smoothly integrated into large-
scale design flows. Finally, verification tools should be able to exploit the parallel and distributed computing
facilities that are now ubiquitous, from desktop to high-performance computers.

3. Research Program

3.1. New Formal Languages and their Concurrent Implementations
We aim at proposing and implementing new formal languages for the specification, implementation, and
verification of concurrent systems. In order to provide a complete, coherent methodological framework, two
research directions must be addressed:
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• Model-based specifications: these are operational (i.e., constructive) descriptions of systems, usually
expressed in terms of processes that execute concurrently, synchronize together and communicate.
Process calculi are typical examples of model-based specification languages. The approach we
promote is based on LOTOS NT (LNT for short), a formal specification language that incorporates
most constructs stemming from classical programming languages, which eases its acceptance by
students and industry engineers. LNT [36] is derived from the ISO standard E-LOTOS (2001),
of which it represents the first successful implementation, based on a source-level translation from
LNT to the former ISO standard LOTOS (1989). We are working both on the semantic foundations
of LNT (enhancing the language with module interfaces and timed/probabilistic/stochastic features,
compiling the m among n synchronization, etc.) and on the generation of efficient parallel and
distributed code. Once equipped with these features, LNT will enable formally verified asynchronous
concurrent designs to be implemented automatically.

• Property-based specifications: these are declarative (i.e., non-constructive) descriptions of systems,
which express what a system should do rather than how the system should do it. Temporal logics
and µ-calculi are typical examples of property-based specification languages. The natural models
underlying value-passing specification languages, such as LNT, are Labeled Transition Systems
(LTSs or simply graphs) in which the transitions between states are labeled by actions containing
data values exchanged during handshake communications. In order to reason accurately about these
LTSs, temporal logics involving data values are necessary. The approach we promote is based on
MCL (Model Checking Language) [57], which extends the modal µ-calculus with data-handling
primitives, fairness operators encoding generalized Büchi automata, and a functional-like language
for describing complex transition sequences. We are working both on the semantic foundations of
MCL (extending the language with new temporal and hybrid operators, translating these operators
into lower-level formalisms, enhancing the type system, etc.) and also on improving the MCL on-
the-fly model checking technology (devising new algorithms, enhancing ergonomy by detecting and
reporting vacuity, etc.).

We address these two directions simultaneously, yet in a coherent manner, with a particular focus on applicable
concurrent code generation and computer-aided verification.

3.2. Parallel and Distributed Verification
Exploiting large-scale high-performance computers is a promising way to augment the capabilities of formal
verification. The underlying problems are far from trivial, making the correct design, implementation, fine-
tuning, and benchmarking of parallel and distributed verification algorithms long-term and difficult activities.
Sequential verification algorithms cannot be reused as such for this task: they are inherently complex, and their
existing implementations reflect several years of optimizations and enhancements. To obtain good speedup
and scalability, it is necessary to invent new parallel and distributed algorithms rather than to attempt a
parallelization of existing sequential ones. We seek to achieve this objective by working along two directions:

• Rigorous design: Because of their high complexity, concurrent verification algorithms should them-
selves be subject to formal modeling and verification, as confirmed by recent trends in the certifi-
cation of safety-critical applications. To facilitate the development of new parallel and distributed
verification algorithms, we promote a rigorous approach based on formal methods and verification.
Such algorithms will be first specified formally in LNT, then validated using existing model checking
algorithms of the CADP toolbox. Second, parallel or distributed implementations of these algorithms
will be generated automatically from the LNT specifications, enabling them to be experimented on
large computing infrastructures, such as clusters and grids. As a side-effect, this “bootstrapping”
approach would produce new verification tools that can later be used to self-verify their own design.

• Performance optimization: In devising parallel and distributed verification algorithms, particular
care must be taken to optimize performance. These algorithms will face concurrency issues at sev-
eral levels: grids of heterogeneous clusters (architecture-independence of data, dynamic load balanc-
ing), clusters of homogeneous machines connected by a network (message-passing communication,
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detection of stable states), and multi-core machines (shared-memory communication, thread syn-
chronization). We will seek to exploit the results achieved in the parallel and distributed computing
field to improve performance when using thousands of machines by reducing the number of connec-
tions and the messages exchanged between the cooperating processes carrying out the verification
task. Another important issue is the generalization of existing LTS representations (explicit, implicit,
distributed) in order to make them fully interoperable, such that compilers and verification tools can
handle these models transparently.

3.3. Timed, Probabilistic, and Stochastic Extensions
Concurrent systems can be analyzed from a qualitative point of view, to check whether certain properties
of interest (e.g., safety, liveness, fairness, etc.) are satisfied. This is the role of functional verification, which
produces Boolean (yes/no) verdicts. However, it is often useful to analyze such systems from a quantitative
point of view, to answer non-functional questions regarding performance over the long run, response time,
throughput, latency, failure probability, etc. Such questions, which call for numerical (rather than binary)
answers, are essential when studying the performance and dependability (e.g., availability, reliability, etc.) of
complex systems.

Traditionally, qualitative and quantitative analyzes are performed separately, using different modeling lan-
guages and different software tools, often by distinct persons. Unifying these separate processes to form a
seamless design flow with common modeling languages and analysis tools is therefore desirable, for both sci-
entific and economic reasons. Technically, the existing modeling languages for concurrent systems need to be
enriched with new features for describing quantitative aspects, such as probabilities, weights, and time. Such
extensions have been well-studied and, for each of these directions, there exist various kinds of automata,
e.g., discrete-time Markov chains for probabilities, weighted automata for weights, timed automata for hard
real-time, continuous-time Markov chains for soft real-time with exponential distributions, etc. Nowadays, the
next scientific challenge is to combine these individual extensions altogether to provide even more expressive
models suitable for advanced applications.

Many such combinations have been proposed in the literature, and there is a large amount of models adding
probabilities, weights, and/or time. However, an unfortunate consequence of this diversity is the confuse
landscape of software tools supporting such models. Dozens of tools have been developed to implement
theoretical ideas about probabilities, weights, and time in concurrent systems. Unfortunately, these tools do
not interoperate smoothly, due both to incompatibilities in the underlying semantic models and to the lack of
common exchange formats.

To address these issues, CONVECS follows two research directions:

• Unifying the semantic models. Firstly, we will perform a systematic survey of the existing semantic
models in order to distinguish between their essential and non-essential characteristics, the goal
being to propose a unified semantic model that is compatible with process calculi techniques for
specifying and verifying concurrent systems. There are already proposals for unification either
theoretical (e.g., Markov automata) or practical (e.g., PRISM and MODEST modeling languages),
but these languages focus on quantitative aspects and do not provide high-level control structures
and data handling features (as LNT does, for instance). Work is therefore needed to unify process
calculi and quantitative models, still retaining the benefits of both worlds.

• Increasing the interoperability of analysis tools. Secondly, we will seek to enhance the interoperabil-
ity of existing tools for timed, probabilistic, and stochastic systems. Based on scientific exchanges
with developers of advanced tools for quantitative analysis, we plan to evolve the CADP toolbox as
follows: extending its perimeter of functional verification with quantitative aspects; enabling deeper
connections with external analysis components for probabilistic, stochastic, and timed models; and
introducing architectural principles for the design and integration of future tools, our long-term goal
being the construction of a European collaborative platform encompassing both functional and non-
functional analyzes.
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3.4. Component-Based Architectures for On-the-Fly Verification
On-the-fly verification fights against state explosion by enabling an incremental, demand-driven exploration
of LTSs, thus avoiding their entire construction prior to verification. In this approach, LTS models are
handled implicitly by means of their post function, which computes the transitions going out of given states
and thus serves as a basis for any forward exploration algorithm. On-the-fly verification tools are complex
software artifacts, which must be designed as modularly as possible to enhance their robustness, reduce their
development effort, and facilitate their evolution. To achieve such a modular framework, we undertake research
in several directions:

• New interfaces for on-the-fly LTS manipulation. The current application programming interface
(API) for on-the-fly graph manipulation, named OPEN/CAESAR [43], provides an “opaque”
representation of states and actions (transitions labels): states are represented as memory areas of
fixed size and actions are character strings. Although appropriate to the pure process algebraic
setting, this representation must be generalized to provide additional information supporting an
efficient construction of advanced verification features, such as: handling of the types, functions, data
values, and parallel structure of the source program under verification, independence of transitions
in the LTS, quantitative (timed/probabilistic/stochastic) information, etc.

• Compositional framework for on-the-fly LTS analysis. On-the-fly model checkers and equivalence
checkers usually perform several operations on graph models (LTSs, Boolean graphs, etc.), such
as exploration, parallel composition, partial order reduction, encoding of model checking and
equivalence checking in terms of Boolean equation systems, resolution and diagnostic generation
for Boolean equation systems, etc. To facilitate the design, implementation, and usage of these
functionalities, it is necessary to encapsulate them in software components that could be freely
combined and replaced. Such components would act as graph transformers, that would execute (on
a sequential machine) in a way similar to coroutines and to the composition of lazy functions in
functional programming languages. Besides its obvious benefits in modularity, such a component-
based architecture will also make it possible to take advantage of multi-core processors.

• New generic components for on-the-fly verification. The quest for new on-the-fly components for
LTS analysis must be pursued, with the goal of obtaining a rich catalog of interoperable components
serving as building blocks for new analysis features. A long-term goal of this approach is to provide
an increasingly large catalog of interoperable components covering all verification and analysis
functionalities that appear to be useful in practice. It is worth noticing that some components can
be very complex pieces of software (e.g., the encapsulation of an on-the-fly model checker for a
rich temporal logic). Ideally, it should be possible to build a novel verification or analysis tool by
assembling on-the-fly graph manipulation components taken from the catalog. This would provide
a flexible means of building new verification and analysis tools by reusing generic, interoperable
model manipulation components.

3.5. Real-Life Applications and Case Studies
We believe that theoretical studies and tool developments must be confronted with significant case studies to
assess their applicability and to identify new research directions. Therefore, we seek to apply our languages,
models, and tools for specifying and verifying formally real-life applications, often in the context of industrial
collaborations.

4. Application Domains

4.1. Application Domains
The theoretical framework we use (automata, process algebras, bisimulations, temporal logics, etc.) and the
software tools we develop are general enough to fit the needs of many application domains. They are applicable
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to virtually any system or protocol that consists of distributed agents communicating by asynchronous
messages. The list of recent case studies performed with the CADP toolbox (see in particular § 6.5) illustrates
the diversity of applications:

• Bioinformatics: genetic regulatory networks, nutritional stress response, metabolic pathways,

• Component-based systems: Web services, peer-to-peer networks,

• Databases: transaction protocols, distributed knowledge bases, stock management,

• Distributed systems: virtual shared memory, dynamic reconfiguration algorithms, fault tolerance
algorithms, cloud computing,

• Embedded systems: air traffic control, avionic systems, medical devices,

• Hardware architectures: multiprocessor architectures, systems on chip, cache coherency protocols,
hardware/software codesign,

• Human-machine interaction: graphical interfaces, biomedical data visualization, plasticity,

• Security protocols: authentication, electronic transactions, cryptographic key distribution,

• Telecommunications: high-speed networks, network management, mobile telephony, feature inter-
action detection.

5. New Software and Platforms

5.1. The CADP Toolbox
Participants: Hubert Garavel [correspondent], Frédéric Lang, Radu Mateescu, Wendelin Serwe.

We maintain and enhance CADP (Construction and Analysis of Distributed Processes – formerly known as
CAESAR/ALDEBARAN Development Package) [1], a toolbox for protocols and distributed systems engineer-
ing 1. In this toolbox, we develop and maintain the following tools:

• CAESAR.ADT [42] is a compiler that translates LOTOS abstract data types into C types and
C functions. The translation involves pattern-matching compiling techniques and automatic recog-
nition of usual types (integers, enumerations, tuples, etc.), which are implemented optimally.

• CAESAR [47], [46] is a compiler that translates LOTOS processes into either C code (for rapid
prototyping and testing purposes) or finite graphs (for verification purposes). The translation is done
using several intermediate steps, among which the construction of a Petri net extended with typed
variables, data handling features, and atomic transitions.

• OPEN/CAESAR [43] is a generic software environment for developing tools that explore graphs on
the fly (for instance, simulation, verification, and test generation tools). Such tools can be developed
independently of any particular high level language. In this respect, OPEN/CAESAR plays a central
role in CADP by connecting language-oriented tools with model-oriented tools. OPEN/CAESAR
consists of a set of 16 code libraries with their programming interfaces, such as:

– CAESAR_GRAPH, which provides the programming interface for graph exploration,

– CAESAR_HASH, which contains several hash functions,

– CAESAR_SOLVE, which resolves Boolean equation systems on the fly,

– CAESAR_STACK, which implements stacks for depth-first search exploration, and

– CAESAR_TABLE, which handles tables of states, transitions, labels, etc.

1http://cadp.inria.fr

http://cadp.inria.fr
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A number of on-the-fly analysis tools have been developed within the OPEN/CAESAR environment,
among which:

– BISIMULATOR, which checks bisimulation equivalences and preorders,

– CUNCTATOR, which performs steady-state simulation of continuous-time Markov
chains,

– DETERMINATOR, which eliminates stochastic nondeterminism in normal, probabilistic,
or stochastic systems,

– DISTRIBUTOR, which generates the graph of reachable states using several machines,

– EVALUATOR, which evaluates MCL formulas,

– EXECUTOR, which performs random execution,

– EXHIBITOR, which searches for execution sequences matching a given regular expres-
sion,

– GENERATOR, which constructs the graph of reachable states,

– PROJECTOR, which computes abstractions of communicating systems,

– REDUCTOR, which constructs and minimizes the graph of reachable states modulo
various equivalence relations,

– SIMULATOR, XSIMULATOR, and OCIS, which enable interactive simulation, and

– TERMINATOR, which searches for deadlock states.

• BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using
efficient compression techniques) and a software environment for handling this format. BCG also
plays a key role in CADP as many tools rely on this format for their inputs/outputs. The BCG
environment consists of various libraries with their programming interfaces, and of several tools,
such as:

– BCG_CMP, which compares two graphs,

– BCG_DRAW, which builds a two-dimensional view of a graph,

– BCG_EDIT, which allows the graph layout produced by BCG_DRAW to be modified
interactively,

– BCG_GRAPH, which generates various forms of practically useful graphs,

– BCG_INFO, which displays various statistical information about a graph,

– BCG_IO, which performs conversions between BCG and many other graph formats,

– BCG_LABELS, which hides and/or renames (using regular expressions) the transition
labels of a graph,

– BCG_MIN, which minimizes a graph modulo strong or branching equivalences (and can
also deal with probabilistic and stochastic systems),

– BCG_STEADY, which performs steady-state numerical analysis of (extended) continuous-
time Markov chains,

– BCG_TRANSIENT, which performs transient numerical analysis of (extended)
continuous-time Markov chains, and

– XTL (eXecutable Temporal Language), which is a high level, functional language for
programming exploration algorithms on BCG graphs. XTL provides primitives to handle
states, transitions, labels, successor and predecessor functions, etc.
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For instance, one can define recursive functions on sets of states, which allow evaluation
and diagnostic generation fixed point algorithms for usual temporal logics (such as HML
[51], CTL [39], ACTL [41], etc.) to be defined in XTL.

• PBG (Partitioned BCG Graph) is a file format implementing the theoretical concept of Partitioned
LTS [45] and providing a unified access to a graph partitioned in fragments distributed over a set
of remote machines, possibly located in different countries. The PBG format is supported by several
tools, such as:

– PBG_CP, PBG_MV, and PBG_RM, which facilitate standard operations (copying, mov-
ing, and removing) on PBG files, maintaining consistency during these operations,

– PBG_MERGE (formerly known as BCG_MERGE), which transforms a distributed graph
into a monolithic one represented in BCG format,

– PBG_INFO, which displays various statistical information about a distributed graph.

• The connection between explicit models (such as BCG graphs) and implicit models (explored on the
fly) is ensured by OPEN/CAESAR-compliant compilers, e.g.:

– BCG_OPEN, for models represented as BCG graphs,

– CAESAR.OPEN, for models expressed as LOTOS descriptions,

– EXP.OPEN, for models expressed as communicating automata,

– FSP.OPEN, for models expressed as FSP [56] descriptions,

– LNT.OPEN, for models expressed as LNT descriptions, and

– SEQ.OPEN, for models represented as sets of execution traces.

The CADP toolbox also includes TGV (Test Generation based on Verification), which has been developed by
the VERIMAG laboratory (Grenoble) and the VERTECS project-team at Inria Rennes – Bretagne-Atlantique.

The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graphical
interface or the SVL [44] scripting language. Both EUCALYPTUS and SVL provide users with an easy and
uniform access to the CADP tools by performing file format conversions automatically whenever needed and
by supplying appropriate command-line options as the tools are invoked.

5.2. The PMC Partial Model Checker
Participants: Radu Mateescu, Frédéric Lang.

We develop a tool named PMC (Partial Model Checker, see § 6.4), which performs the compositional model
checking of dataless MCL formulas on networks of communicating automata described in the EXP language.

PMC can be freely downloaded from the CONVECS Web site 2.

6. New Results

6.1. New Formal Languages and their Implementations
6.1.1. Definition of LNT

Participants: Hubert Garavel, Frédéric Lang, Wendelin Serwe.

LNT is a next generation formal description language for asynchronous concurrent systems, which attempts
to combine the best features of imperative programming languages and value-passing process algebras. LNT
is increasingly used by CONVECS for industrial case studies and applications (see § 6.5) and serves also in
university courses on concurrency, in particular at ENSIMAG (Grenoble) and at Saarland University.

2http://convecs.inria.fr/software/pmc

http://convecs.inria.fr/software/pmc
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In 2015, the theoretical foundations of LNT have been explored in a journal article [14] that, after examining
the various ways sequential composition is handled in mainstream value-passing process calculi, shows that
these various approaches are subsumed by the LNT approach, which is easier to learn and leads to more
readable and more concise specifications.

The LNT language has also been enhanced in several aspects:

• The “case” construct now supports multiple (tuple-like) expressions and patterns.

• Two new parameter-passing modes “in var” and “out var” have been introduced to allow finer
data-flow analyses.

• Exceptions are better handled and a new “assert” statement was added to LNT.

• The “none” channel is now implicitly predefined.

• Finally, the LNT reference manual has been extended and updated at many places.

6.1.2. Translation from LNT to LOTOS
Participants: Hubert Garavel, Frédéric Lang, Wendelin Serwe.

In 2015, the translator from LNT to LOTOS was further improved. In addition to 22 bug fixes and improved
error messages, the following enhancements have been brought:

• The “-root” option of LNT2LOTOS now accepts value parameters for LNT processes and supports
gate parameters in named style. It also accepts the name of a process not present in the current
module.

• Negative number constants of the form “−2k−1”, where integer numbers are represented using k
bits, are now supported.

• Better warning messages are emitted for “in” and “in out” (formerly “inout”) parameters.

6.1.3. Translation from LOTOS to Petri nets and C
Participants: Hubert Garavel, Wendelin Serwe.

The LOTOS compilers CAESAR and CAESAR.ADT, which were once the flagship of CADP, now play a
more discrete role since LNT (rather than LOTOS) has become the recommended specification language
of CADP. Thus, CAESAR and CAESAR.ADT are mostly used as back-end translators for LOTOS programs
automatically generated from LNT or other formalisms such as Fiacre, and are only modified when this appears
to be strictly necessary.

In 2015, in addition to a few bug fixes, the “-root” option of the CAESAR compiler has been generalized
to support processes having value parameters; this makes compositional verification easier by removing the
need for introducing extra wrapper processes having no value parameters. The EXEC/CAESAR interface has
been extended with two new primitives “CAESAR_KERNEL_DELAY” and “CAESAR_KERNEL_EXIT()”. Also,
optimizations have been introduced to generate shorter and simpler C code, and to make sure that this C code
compiles without spurious warnings.

A systematic comparison between CAESAR.ADT and available interpreters/compilers for other languages
that support rewrite rules or pattern matching has been undertaken. This comparison reuses the benchmarks
developed for the three Rewrite Engine Competitions (2006, 2009, and 2010). As a preliminary step, we
developed a tenth translators from the REC formalism in which these benchmarks are written to languages
such as Haskell, LOTOS, Maude, mCRL, OCAML, Opal, Rascal, Scala, and Tom.

6.1.4. NUPN
Participants: Hubert Garavel, Frédéric Lang.
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The CAESAR.BDD tool that analyzes NUPN (Nested-Unit Petri Nets) models and serves to prepare the
yearly Model Checking Contest 3 has been enhanced in several ways. In addition to 7 bug fixes, 14 new
command-line options have been added to CAESAR.BDD (“-arcs”, “-bits”, “-creator”, “-density”,
“-encodings”, “-height”, “-hwb”, “-multiple-arcs”, “-multiple-initial-tokens”, “-places”, “-
redundant-units”, “-transitions”, “-units”, and “-width”). The output format produced by the “-
exclusive-places” option has been revised. The “-mcc” option now computes the extended free choice
property. A new option “-network nupn” was also added to EXP.OPEN to produce NUPN models from
automata networks.

Particular efforts have been put to increase the scalability of CAESAR.BDD for large models. Reading
large NUPN files was made much faster. The “-exclusive-places” option of CAESAR.BDD was made
faster too. The size of the largest data structure allocated by CAESAR.BDD, has been divided by four.
CAESAR.BDD has also been optimized to save memory when handling NUPN models having a simple
hierarchical structure. Finally, user-specified timeouts are better supported.

A conference article was published [24], which formally defines the NUPN model and investigates its
mathematical properties. Additionally, the assembly of a collection of large NUPN models was undertaken,
and various prototype tools to handle NUPN models (“nupn_pack”, “nupn_reduce”, and “nupn_merge”) have
been developed.

6.1.5. Translation from GRL to LNT
Participants: Fatma Jebali, Jingyan Jourdan-Lu, Frédéric Lang, Eric Léo, Radu Mateescu.

In the context of the Bluesky project (see § 8.1.2.1), we study the formal modeling of GALS (Globally Asyn-
chronous, Locally Synchronous) systems, which are composed of several synchronous subsystems evolving
cyclically, each at its own pace, and communicating with each other asynchronously. Designing GALS sys-
tems is challenging due to both the high level of (synchronous and asynchronous) concurrency and the hetero-
geneity of computations (deterministic and nondeterministic). To bring our formal verification techniques and
tools closer to the GALS paradigm, we designed a new formal language named GRL (GALS Representation
Language), as an intermediate format between GALS models and purely asynchronous concurrent models.
GRL combines the main features of synchronous dataflow programming and asynchronous process calculi
into one unified language, while keeping the syntax homogeneous for better acceptance by industrial GALS
designers. GRL allows a modular composition of synchronous systems (blocks), environmental constraints
(environments), and asynchronous communication mechanisms (mediums), to be described at a level of ab-
straction that is appropriate to verification. GRL also supports external C and LNT code. A translator named
GRL2LNT has been developed, allowing an LNT program to be generated from a GRL specification auto-
matically. Additionally, an OPEN/CAESAR-compliant compiler named GRL.OPEN (based on GRL2LNT
and LNT.OPEN) makes possible the on-the-fly exploration of the LTS underlying a GRL specification using
CADP.

In 2015, we have revised the GRL syntax to make GRL easier to learn and to understand. Our data base of
examples has been updated to take those changes into account. We have also added some language features,
such as named constants, and a dedicated construct called activation signal to define constraints on the
asynchronous activation of blocks. This new construct is easier to use than the previous solution based on ad-
hoc data signals, and semantically more elegant as it avoids unexpected deadlocks. Activation signals permit
realistic situations such as halting, priorities, scenarios, and pace relations between synchronous components
to be modeled at a suitable level of abstraction. They can be smoothly translated into LNT without affecting
the rest of the translation.

As regards the specification of properties, to reduce the complexity of using full-fledged temporal logics, we
have also proposed a property specification language dedicated to GALS systems, based upon a set of temporal
logic patterns, which capture frequently encountered behaviours, encompassing both time-critical and untimed
aspects of GALS systems. Those patterns include deadlock, livelock, safety, liveness, and fairness properties.
The semantics of the proposed patterns have been defined by translation into the MCL language.

3http://mcc.lip6.fr/

http://mcc.lip6.fr/
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As regards the GRL2LNT tool, nine successive versions have been released, to take into account the syntactic
changes in the GRL language, to correct about 20 bugs, to eliminate compilation warnings, and to implement
the following new features:

• The generated LNT code has been corrected so as to eliminate compilation warnings and to take into
account recent changes in the syntax of LNT (see § 6.1.1).

• GRL system specifications can now be parameterized with data values and instantiated using the
new “-root” option of GRL2LNT.

• The interface between GRL and external C code has been revised in two ways: (1) external blocks
with several outputs are now mapped to a single external function instead of one function per output
previously, and (2) conversion functions between GRL and C numeric types have been defined,
handling runtime verification of overflows. Those conversion functions have been packaged in a
new code library, which is automatically included by GRL2LNT.

• Several verifications on the usage of signals and communication channels have been implemented,
leading either to error messages, or to warnings corresponding to potential errors. About 20 new
error messages and 10 new warnings have been added.

In addition, three manual pages have been written to document respectively the GRL language, the GRL2LNT
translator tool, and the GRL.OPEN shell script. The GRL non-regression test base has been extended and now
contains 230 correct examples and 400 incorrect examples.

An article describing the GRL language and its associated tools has been submitted to an international journal.

6.1.6. Translation from BPMN to LNT
Participant: Gwen Salaün.

Business processes support the modeling and the implementation of software as workflows of local and inter-
process activities. Taking over structuring and composition, evolution has become a central concern in software
development. We believe this should be taken into account as soon as the modeling of business processes,
which can thereafter be made executable using process engines or model-to-code transformations. We advocate
that business process evolution can be formally analyzed in order to compare different versions of processes,
identify precisely the differences between them, and ensure the desired consistency.

To reach this objective, we developed, in collaboration with Pascal Poizat (LIP6, Paris), a model transformation
from the BPMN standard notation to the LNT process algebra. We then proposed a set of relations for
comparing business processes at the formal model level. With reference to related work, we proposed a richer
set of comparison primitives supporting renaming, refinement, property- and context-awareness. Thanks to
the implementation of a tool that integrates with the Eclipse IDE and behind-the-scene interaction with the
CADP verification toolbox, we put the checking of evolution within the reach of business process designers.
Our approach is fully automated and has been applied for evaluation to a large set of BPMN processes.

6.1.7. Other Language Developments
Participants: Hugues Evrard, Hubert Garavel, Frédéric Lang, Eric Léo, Wendelin Serwe.

The ability to compile and verify formal specifications with complex, user-defined operations and data
structures is a key feature of the CADP toolbox since its very origins. A long-run effort has been recently
undertaken to ensure a uniform treatment of types, values, and functions across all the various CADP tools.

In 2015, the connection to external software development tools has progressed. The support of the LOTOS
and LNT languages in the Emacs/XEmacs, jEdit, and Vim editors has improved. More text editors are now
supported, including Nano, Notepad++, and all the text editors compliant with GtkSourceView 3.0 (including
the Gedit editor of Gnome). Pretty-printers such as a2ps and the LaTeX "listings" package are also supported.
Configuration files for three CADP languages (MCL, SVL, and XTL) and three CADP formats (BES, NUPN,
and RBC) have been added.
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Also, with the help of its principal author Pierre Boullier (Inria, Alpage), we corrected a memory allocation
bug in the SYNTAX parser generator, which is used in most of the compilers developed by the CONVECS
team.

6.2. Parallel and Distributed Verification
6.2.1. Distributed Code Generation for LNT

Participants: Hugues Evrard, Frédéric Lang.

Rigorous development and prototyping of a distributed algorithm using LNT involves the automatic generation
of a distributed implementation. For the latter, a protocol realizing process synchronization is required. As
far as possible, this protocol must itself be distributed, so as to avoid the bottleneck that would inevitably
arise if a unique process would have to manage all synchronizations in the system. A particularity of such a
protocol is its ability to support branching synchronizations, corresponding to situations where a process may
offer a choice of synchronizing actions (which themselves may nondeterministically involve several sets of
synchronizing processes) instead of a single one. Therefore, a classical barrier protocol is not sufficient and a
more elaborate synchronization protocol is needed.

Using a synchronization protocol that we verified formally in 2013, we developed a prototype distributed code
generator, named DLC (Distributed LNT Compiler), which takes as input the model of a distributed system
described as a parallel composition of LNT processes.

In 2015, we finalized the development of DLC: the code was cleaned and the different compiler components
were better integrated. A new option was added for the generated executables to dump at runtime an
execution trace in the SEQUENCE format of CADP, for further analysis. A complete description of DLC,
its synchronization protocol, performance data and usage examples were presented in Hugues Evrard’s PhD
thesis [9], defended in July 2015. An overview of DLC was presented in an international conference paper [23],
and an extended version has been prepared for a journal special issue currently under construction. A tool paper
was accepted in an international conference that will take place in 2016 [22].

6.2.2. Verification of Asynchronously Communicating Systems
Participants: Lakhdar Akroun, Gwen Salaün.

Analyzing systems communicating asynchronously via reliable FIFO buffers is an undecidable problem. A
typical approach is to check whether the system is bounded, and if not, whether the corresponding state space
can be made finite by limiting the presence of communication cycles in behavioral models or by fixing the
buffer size. In this work, our focus is on systems that are likely to be unbounded and therefore result in infinite
systems. We do not want to restrict the system by imposing any arbitrary bound. We introduced a notion of
stability and proved that once the system is stable for a specific buffer bound, it remains stable whatever larger
bounds are chosen for buffers. This enables one to check certain properties on the system for that bound and
to ensure that the system will preserve them whatever larger bounds are used for buffers. We also proved that
computing this bound is undecidable but we showed how we can succeed in computing these bounds for many
typical examples using heuristics and equivalence checking.

6.2.3. Analysis of Verification Counterexamples
Participants: Gianluca Barbon, Gwen Salaün.

Model checking is an established technique for automatically verifying that a model, e.g., a Labelled Transition
System (LTS), obtained from higher-level specification languages (such as process algebras) satisfies a given
temporal property, e.g., the absence of deadlocks. When the model violates the property, the model checker
returns a counterexample, which is a sequence of actions leading to a state where the property is not satisfied.
Understanding this counterexample for debugging the specification is a complicated task for several reasons:
(i) the counterexample can contain hundreds (even thousands) of actions, (ii) the debugging task is mostly
achieved manually, and (iii) the counterexample does not give any clue on the state of the system (e.g.,
parallelism or data expressions) when the error occurs.
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In collaboration with the SLIDE team of the LIG laboratory, we work on new solutions for simplifying the
comprehension of counterexamples and thus favouring usability of model checking techniques. To do so,
we apply pattern mining techniques to a set of correct traces (extracted from the LTS) and incorrect traces
(corresponding to counterexamples), to identify specific patterns indicating more precisely the source of the
problem.

6.3. Timed, Probabilistic, and Stochastic Extensions
6.3.1. Model Checking for Extended PCTL

Participants: Radu Mateescu, José Ignacio Requeno.

In the context of the SENSATION project (see § 8.2.1.1), we study the specification and verification of
quantitative properties of concurrent systems.

In 2015, we developed a probabilistic version of ACTL (Action-based CTL) [41], named PACTL. This
logic represents an action-based counterpart for PCTL (Probabilistic Computation Tree Logic) [50] and is
interpreted naturally over DTMCs with labeled transitions, such as those produced from IPCs (Interactive
Probabilistic Chains) [40]. The PACTL operators generalize those of ACTL: they characterize sequences of
transitions in the DTMC by specifying both the states and the actions labeling the transitions. We implemented
PACTL as an XTL library, which allows the designer to combine properties on actions, data, probabilities, and
discrete time. We have experimented the PACTL library on several DTMCs imported from the probabilistic
model checker PRISM [55] to ensure that both implementations provide the same numerical results.

6.4. Component-Based Architectures for On-the-Fly Verification
6.4.1. Compositional Verification

Participants: Hubert Garavel, Frédéric Lang.

The CADP toolbox contains various tools dedicated to compositional verification, among which EXP.OPEN,
BCG_MIN, BCG_CMP, and SVL play a central role. EXP.OPEN explores on the fly the graph corresponding
to a network of communicating automata (represented as a set of BCG files). BCG_MIN and BCG_CMP
respectively minimize and compare behavior graphs modulo strong or branching bisimulation and their
stochastic extensions. SVL (Script Verification Language) is both a high-level language for expressing
complex verification scenarios and a compiler dedicated to this language.

In 2015, we corrected one bug in BCG_CMP and eight bugs in SVL. We extended the SVL language and
compiler as follows:

• A new statement was added to translate a LOTOS file or a process in a LOTOS file to an LNT file
automatically.

• LNT processes with data parameters can now be instantiated directly in the SVL script, without
requiring a parameterless intermediate process to be defined.

• LNT processes with gate parameters can now be instantiated in the SVL script using the named
parameter-passing style of LNT.

• Specification of a diagnostic file is now optional in the “comparison”, “deadlock”, and “live-
lock” statements of SVL.

• The “property” statement has been extended so that it can now contain any kind of statement,
provided it contains at least one verification statement.

• Within SVL properties, it is now possible to define shell lines followed by an “expected” clause to
specify the expected result of the shell line.

• It is now possible to add a “result” clause after a verification statement, so as to store the result of
the verification in a shell variable that can be subsequently used in the SVL script.
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We improved several demo examples of CADP by using these new SVL constructs, and we added a new demo
example on the verification of an airplane-ground communication protocol.

We also improved the PMC tool, by correcting five bugs and adding a new “-order” option, which permits the
user to define a particular order for quotienting. We improved the presentation of the demo examples released
in the PMC distribution. Those examples are now given in LNT and translated automatically into networks of
automata in the EXP language, instead of being given directly as networks of automata.

6.4.2. On-the-Fly Test Generation
Participants: Hubert Garavel, Radu Mateescu, Wendelin Serwe.

In the context of the collaboration with STMicroelectronics, we study techniques for testing if a (hardware)
implementation is conform to a formal model described in LNT. Our approach is inspired by the theory of
conformance testing [63], as implemented for instance in TGV [53] and JTorX [33]. We have developed three
prototype tools to support this approach. The first tool implements a dedicated OPEN/CAESAR-compliant
compiler for the particular asymmetric synchronous product between the model and the test purpose. The
second tool, based on slightly extended generic components for graph manipulation (τ -compression, τ -
confluence reduction, determinization) and resolution of Boolean equation systems, generates the complete
test graph (CTG), which can be used to extract concrete test cases or to drive the test of the implementation.
A third prototype tool takes as input a CTG and extracts either a single test case (randomly chosen or the first
encountered one), or the set of all test cases. The principal advantage of our approach compared to existing
tools is the use of LNT for describing test purposes, which facilitates the manipulation of data values.

In 2015, we corrected the prototype tools to properly handle timers and failure transitions, improved the
documentation, and simplified internal data structures.

These prototype tools were used in the case study with STMicroelectronics (see § 6.5.1) and the EnergyBus
(see § 6.5.4).

6.4.3. Other Component Developments
Participants: Soraya Arias, Hubert Garavel, Frédéric Lang, Radu Mateescu.

We separated the MCL library defining the operators of ACTL (Action-based CTL) [41] in two parts: the first
one defines the operators of ACTLrX (the fragment of ACTL without the next-time operators), including
optimized definitions of derived temporal operators, and the second one defines the next-time operators,
including the definitions of silent next-time operators, which complement the visible next-time operators
already present in the library.

We also added an MCL library defining the operators of the Lµ-dsbr fragment of modal µ-calculus [6], which
includes the ACTLrX library. The Lµ-dsbr library also defines the absence of deadlock property as an MCL
formula adequate w.r.t. divergence-sensitive branching bisimulation (divbranching for short) and allowing one
to hide all visible actions in the LTS and to reduce it modulo divbranching prior to verification, which may
bring significant performance gains.

A new major version 1.2 of the BCG format for storing Labelled Transition Systems was released as part of
CADP 2015-a. Following this change, various minor residual bugs have been identified and fixed in 2015, and
the type system of XTL has been modified to require fewer explicit type coercions.

In addition to bug fixes in various tools (e.g., CUNCTATOR, EUCALYPTUS, TST, XTL, etc.), the installation
procedures of CADP have been revisited and updated; in particular, work is going on and many preliminary
changes have been silently brought to ease installation of CADP on Windows.

6.5. Real-Life Applications and Case Studies
6.5.1. ACE Cache Coherency Protocol

Participants: Abderahman Kriouile, Radu Mateescu, Wendelin Serwe.
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In the context of a CIFRE convention with STMicroelectronics, we studied system-level cache coherency, a
major challenge faced in the current System-on-Chip architectures. Because of their increasing complexity
(mainly due to the significant number of computing units), the validation effort using current simulation-based
techniques grows exponentially. As an alternative, we study formal verification.

We focused on the ACE (AXI Coherency Extensions) cache coherency protocol, a system-level coherency
protocol proposed by ARM [31]. In previous years, we developed a parametric formal model (about 3, 400
lines of LNT) of a system consisting of an ACE-based cache coherent interconnect, processors, and a main
memory. We also specified temporal properties expressing cache coherence, data integrity, and successful
completion of each transaction. Note that the former property required to transform state-based properties into
action-based ones, by adding information about the cache state to the actions executed by the cache.

In 2015, we continued to exploit the formal model to improve the validation of the architecture under design at
STMicroelectronics, in particular by integrating tests derived from the formal model into the official test plans.
This work led to a publication in an international conference [25], and the defense of the PhD corresponding
to the CIFRE convention [10].

6.5.2. Deployment and Reconfiguration Protocols for Cloud Applications
Participants: Rim Sakka Abid, Gwen Salaün.

Cloud applications are complex applications composed of a set of interconnected software components
running on different virtual machines, hosted on remote physical servers. Deploying and reconfiguring this
kind of applications are very complicated tasks especially when one or multiple virtual machines fail when
achieving these tasks. Hence, there is a need for protocols that can dynamically reconfigure and manage
running distributed applications.

In 2015, we proposed a novel protocol, which aims at reconfiguring cloud applications. This protocol is
able to ensure communication between virtual machines and resolve dependencies by exchanging messages,
(dis)connecting, and starting/stopping components in a specific order. The interaction between machines is
assured via a publish-subscribe messaging system. Each machine reconfigures itself in a decentralized way.
The protocol supports virtual machine failures, and the reconfiguration always terminates successfully even in
the presence of a finite number of failures. Due to the high degree of parallelism inherent to these applications,
the protocol was specified in LNT and verified using CADP. The use of formal specification languages and
tools helped to detect several bugs and to improve the protocol. These results were published in [12].

Another line of work concerns autonomic computing in cloud environments. Managing distributed cloud
applications is a challenging problem because manual administration is no longer realistic for these complex
distributed systems. Thus, autonomic computing is a promising solution for monitoring and updating these
applications automatically. This is achieved through the automation of administration functions and the use of
control loops called autonomic managers. An autonomic manager observes the environment, detects changes,
and reconfigures dynamically the application. Multiple autonomic managers can be deployed in the same
system and must make consistent decisions. Using them without coordination may lead to inconsistencies and
error-prone situations.

In 2015, we propose an approach for coordinating stateful autonomic managers, which relies on a simple
coordination language, new techniques for asynchronous controller synthesis and Java code generation. We
used our approach for coordinating real-world cloud applications. These results were published in [19].

6.5.3. Networks of Programmable Logic Controllers
Participants: Fatma Jebali, Jingyan Jourdan-Lu, Frédéric Lang, Eric Léo, Radu Mateescu.

In the context of the Bluesky project (see § 8.1.2.1), we study the software applications embedded on the PLCs
(Programmable Logic Controllers) manufactured by Crouzet Automatismes. One of the objectives of Bluesky
is to enable the rigorous design of complex control applications running on several PLCs connected by a
network. Such applications are instances of GALS (Globally Asynchronous, Locally Synchronous) systems
composed of several synchronous automata embedded on individual PLCs, which interact asynchronously
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by exchanging messages. A formal analysis of these systems can be naturally achieved by using the formal
languages and verification techniques developed in the field of asynchronous concurrency.

For describing the applications embedded on individual PLCs, Crouzet provides a dataflow language with
graphical syntax and synchronous semantics, equipped with an ergonomic user-interface that facilitates the
learning and use of the language by non-experts. To equip the PLC language of Crouzet with functionalities
for automated verification, the solution adopted in Bluesky was to translate it into GRL (see § 6.1.5), which
enables the connection to testing and verification tools covering the synchronous and asynchronous aspects.

In 2015, we have provided support to Crouzet, who started to integrate GRL in the PLC design process by
developing both a library of GRL blocks corresponding to function blocks present in their PLC programming
tool, and an automated translation from a PLC program into a GRL block. The GRL2LNT and GRL.OPEN
tools (see § 6.1.5) provide a direct connection to all verification functionalities of CADP, in particular model
checking and equivalence checking.

We also investigated the equivalence checking for networks of PLCs, with the objective of proposing a general
methodology usable in industrial context. We identified several rules (formalized as templates) for describing
the asynchronous and synchronous parts of PLC networks, as well as their external behaviour (service), in
order to facilitate the equivalence checking modulo branching bisimulation.

6.5.4. EnergyBus Standard for Connecting Electric Components
Participants: Hubert Garavel, Wendelin Serwe.

The EnergyBus 4 is an upcoming industrial standard for electric power transmission and management, based on
the CANopen field bus. It is developed by a consortium assembling all major industrial players (such as Bosch,
Panasonic, and Emtas) in the area of light electric vehicles (LEV); their intention is to ensure interoperability
between all electric LEV components. At the core of this initiative is a universal plug integrating a CAN-Bus 5

with switchable power lines. The central and innovative role of the EnergyBus is to manage the safe electricity
access and distribution inside an EnergyBus network.

In the framework of the European FP7 project SENSATION (see § 8.2.1.1) a formal specification in LNT of
the main EnergyBus protocols is being developed by Alexander Graf-Brill and Holger Hermanns at Saarland
University [48], with the active collaboration of CONVECS.

In 2015, we pursued the analysis of the LNT model, involving both verification (by means of state-space
exploration and model checking techniques) and validation (using test cases automatically derived from the
formal LNT model).

6.5.5. AutoFlight Control System
Participant: Fatma Jebali.

In collaboration with Eric Jenn (IRT Saint Exupery, Toulouse), we studied an AutoFlight Control System
(AFCS), provided by Thales Avionics. The goal of an AFCS is to improve the quality of flight and enhance
the operational capability of the aircraft. The architecture of the AFCS comprises two parts. The first part
(FCP, Flight Control Panel) consists of a control panel, which enables the pilot to interact with the system.
The second part (AFS, Automatic Flight System) is in charge of performing functions such as guidance and
automatic pilot. For safety purposes, each part is organized into a command and monitoring channels. The
command channel ensures the function allocated to the component. The monitoring channel ensures that the
command channel operates correctly. To ensure a sufficient availability level, a high level of redundancy is built
inside the system. Components communicate using various communication means with different latencies
(AFDX, A429, discrete).

4http://www.energybus.org
5http://www.can-cia.org

http://www.energybus.org
http://www.can-cia.org
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Since AFCSs have stringent safety and time-critical requirements, formal verification is required to ensure
their correctness. To this aim, we have applied the GRL approach for the formal modelling and verification of
GALS systems (see § 6.1.5). In a first step, we have addressed the AFCS without redundancy. We have written
a GRL description (750 lines), which can be parameterized by the activation paces of different synchronous
components. We have written a set of correctness properties in MCL, which we have verified on the GRL
model.

6.5.6. Graphical User-Interfaces and Plasticity
Participants: Hubert Garavel, Frédéric Lang, Raquel Oliveira.

In the context of the Connexion project (see § 8.1.1.2) and in close collaboration with Gaëlle Calvary and
Sophie Dupuy-Chessa (IIHM team of the LIG laboratory), we study the formal description and validation
of graphical user-interfaces using the most recent features of the CADP toolbox. The case study assigned to
LIG in this project is a prototype graphical user-interface [38] designed to provide human operators with an
overview of a running nuclear plant. The main goal of the system is to inform the operators about alarms
resulting from faults, disturbances, or unexpected events in the plant. Contrary to conventional control rooms,
which employ large desks and dedicated hardware panels for supervision, this new-generation interface uses
standard computer hardware (i.e., smaller screen(s), keyboard, and mouse), thus raising challenging questions
on how to best provide synthetic views of the plant status. Another challenge is to introduce plasticity in such
interface, so as to enable several supervision operators, including mobile ones outside of the control room, to
get accurate information in real time.

We formally specified this new-generation interface in LNT, encompassing not only the usual components
traditionally found in graphical user-interfaces, but also a model of the physical world (namely, a nuclear
reactor with various fault scenarios) and a cognitive model of a human operator in charge of supervising the
plant. Also, several desirable properties of the interface have been expressed in MCL and verified on the LNT
model using CADP. At last, we used our formal model to check conformance of execution traces generated by
an industrial control room prototype provided by a partner in the project.

In 2015, we finalized our approach to formally verifying safety critical interactive systems provided with
plastic user interfaces, either using equivalence checking (to check whether different versions of user interfaces
present the same interaction capabilities and appearance) or model checking (to check a set of properties over a
model of the system). The results have been published in international conferences [26], [27] and journals [17],
and in Raquel Oliveira’s PhD thesis [11].

6.5.7. Fault-Tolerant Routing for Network-on-Chip Architectures
Participant: Wendelin Serwe.

Fault-tolerant architectures provide adaptivity for on-chip communications, but also increase the complexity of
the design, so that formal verification techniques are needed to check their correctness. In collaboration with
Chris Myers and Zhen Zhang (University of Utah, USA), we studied an extension of the link-fault tolerant
Network-on-Chip (NoC) architecture introduced by Wu et al [64] that supports multiflit wormhole routing. A
major difference with similar architectures existing in the literature is that the considered routing algorithm is
not statically proven free of deadlocks, but rather implements deadlock avoidance (by dynamically detecting
possible deadlock situations and avoiding them by dropping packets).

In 2015, we detected a potential livelock in the previously developed formal LNT model [65]. The correction
of this problem led to an improved routing algorithm, for which the state space for 2x2 NoCs could be
generated compositionally. We also experimented with the analysis of larger configurations on Grid’5000,
but even a 2x3 NoC is still too large, so that compositional state space generation fails with an intermediate
state space of several billions of states. This work led to a publication accepted in an international journal [18]
and a PhD thesis [66].
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6.5.7.1. Other Case Studies

The demo examples of CADP, which have been progressively accumulated since the origins of the toolbox,
are a showcase for the multiple capabilities of CADP, as well as a test bed to assess the new features of
the toolbox. In 2015, the effort to maintain and enhance these demos has been pursued. The progressive
migration to LNT has continued, by translating five demos (16, 21, 22, 36, and 38) from LOTOS to LNT.
A new demo 05 (airplane-ground communication protocol) has been added. The code of many demos was
updated to use the latest features of LNT, such as “in var” parameters and “assert” statements. Demos 14
and 16 have been greatly simplified by inlining MCL and XTL temporal logic formulas in SVL scripts, using
the “property”, “check”, and “|=” statements recently added to SVL. Nine demos (02, 08, 17, 20, 27, 28,
31, 33, and 36) have been simplified by using the new possibility to pass value parameters to LOTOS and LNT
processes directly in SVL scripts. XTL formulas have been shortened in demos 23 and 27. The illustration of
the EXEC/CAESAR framework in demo 38 has been integrated as a property into the SVL script. Finally,
demo 38 led to a publication in an international workshop [29].

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Grants with Industry
Participants: Hubert Garavel, Abderahman Kriouile, Radu Mateescu, Wendelin Serwe.

Abderahman Kriouile is supported by a CIFRE PhD grant (from March 2012 to March 2015) from STMi-
croelectronics (Grenoble) on the verification of cache coherency in systems on chip (see § 6.5.1), under the
supervision of Guilhem Barthes (STMicroelectronics), Christophe Chevallaz (STMicroelectronics), Grégory
Faux (STMicroelectronics), Radu Mateescu (CONVECS), Wendelin Serwe (CONVECS), and Massimo Zen-
dri (STMicroelectronics).

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. FSN (Fonds national pour la Société Numérique)
8.1.1.1. OpenCloudware

Participants: Rim Sakka Abid, Hugues Evrard, Frédéric Lang, Gwen Salaün [correspondent].

OpenCloudware 6 is a project funded by the FSN. The project is led by France Telecom / Orange Labs
(Meylan, France) and involves 18 partners (among which Bull, OW2, Thalès, Inria, etc.). OpenCloudware
aims at providing an open software platform enabling the development, deployment and administration of
cloud applications. The objective is to provide a set of integrated software components for: (i) modeling
distributed applications to be executed on cloud computing infrastructures; (ii) developing and constructing
multi-tier virtualized applications; and (iii) deploying and administrating these applications (PaaS platform)
possibly on multi-IaaS infrastructures.

OpenCloudware started in January 2012 for three years and nine months. The main contributions of CON-
VECS to OpenCloudware (see § 6.5.2) are the formal specification of the models, architectures, and pro-
tocols (self-deployment, dynamic reconfiguration, self-repair, etc.) underlying the OpenCloudware platform,
the automated generation of code from these specifications for rapid prototyping purposes, and the formal
verification of the aforementioned protocols.

8.1.1.2. Connexion
Participants: Hubert Garavel [correspondent], Frédéric Lang, Raquel Oliveira.

6http://www.opencloudware.org

http://www.opencloudware.org
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Connexion 7 (COntrôle commande Nucléaire Numérique pour l’EXport et la rénovatION) is a project funded
by the FSN, within the second call for projects “Investissements d’Avenir — Briques génériques du logiciel
embarqué”. The project, led by EDF and supported by the Pôles de compétitivité Minalogic, Systematic,
and Pôle Nucléaire Bourgogne, involves many industrial and academic partners, namely All4Tech, Alstom
Power, ArevA, Atos Worldgrid, CEA-LIST, CNRS/CRAN, Corys Tess, ENS Cachan, Esterel Technologies,
Inria, LIG, Predict, and Rolls-Royce. Connexion aims at proposing and validating an innovative architecture
dedicated to the design and implementation of control systems for new nuclear power plants in France and
abroad.

Connexion started in April 2012 for four years. In this project, CONVECS assisted another LIG team, IIHM,
in specifying human-machine interfaces formally using the LNT language and in verifying them using CADP
(see § 6.5.6).

8.1.2. Competitivity Clusters
8.1.2.1. Bluesky for I-Automation

Participants: Hubert Garavel, Fatma Jebali, Jingyan Jourdan-Lu, Frédéric Lang, Eric Léo, Radu Mateescu
[correspondent].

Bluesky for I-Automation is a project funded by the FUI (Fonds Unique Interministériel) within the Pôle
de Compétitivité Minalogic. The project, led by Crouzet Automatismes (Valence), involves the SMEs (Small
and Medium Enterprises) Motwin and VerticalM2M, the LCIS laboratory of Grenoble INP, and CONVECS.
Bluesky aims at bringing closer the design of automation applications and the Internet of things by providing
an integrated solution consisting of hardware, software, and services enabling a distributed, Internet-based
design and development of automation systems. The automation systems targeted by the project are networks
of programmable logic controllers, which belong to the class of GALS (Globally Asynchronous, Locally
Synchronous) systems.

Bluesky started in September 2012 for three years and was extended for nine month until June 2016. The main
contributions of CONVECS to Bluesky (see § 6.1.5 and § 6.5.3) are the definition of GRL, the formal pivot
language for describing the asynchronous behavior of logic controller networks, and the automated verification
of the behavior using compositional model checking and equivalence checking techniques.

8.1.3. Other National Collaborations
Additionally, we collaborated in 2015 with the following Inria project-teams:

• PAREO (Inria Nancy — Grand Est): Pierre-Etienne Moreau

Beyond Inria, we had sustained scientific relations with the following researchers:
• Gaëlle Calvary and Sophie Dupuy-Chessa (LIG, Grenoble),
• Fabrice Kordon and Lom Messan Hillah (LIP6, Paris),
• Noël De Palma and Fabienne Boyer (LIG, Grenoble),
• Xavier Etchevers (Orange Labs, Meylan),
• Matthias Güdemann (Systerel, Aix-en-Provence),
• Christophe Deleuze, Ioannis Parissis, and Mouna Tka Mnad (LCIS, Valence),
• Pascal Poizat (LIP6, Paris).

8.2. European Initiatives
8.2.1. FP7 & H2020 Projects
8.2.1.1. SENSATION

Participants: Hubert Garavel [correspondent], Radu Mateescu, José Ignacio Requeno, Wendelin Serwe.

7http://www.cluster-connexion.fr

http://www.cluster-connexion.fr
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SENSATION 8 (Self ENergy-Supporting Autonomous computaTION) is a European project no. 318490
funded by the FP7-ICT-11-8 programme. It gathers 9 participants: Inria (ESTASYS and CONVECS project-
teams), Aalborg University (Denmark), RWTH Aachen and Saarland University (Germany), University of
Twente (The Netherlands), GomSpace (Denmark), and Recore Systems (The Netherlands). The main goal of
SENSATION is to increase the scale of systems that are self-supporting by balancing energy harvesting and
consumption up to the level of complete products. In order to build such Energy Centric Systems, embedded
system designers face the quest for optimal performance within acceptable reliability and tight energy bounds.
Programming systems that reconfigure themselves in view of changing tasks, resources, errors, and available
energy is a demanding challenge.

SENSATION started on October 1st, 2012 for three years, and has been extended for five months until
February 29, 2016. CONVECS contributes to the project regarding the extension of formal languages with
quantitative aspects (see § 6.3.1), studying common semantic models for quantitative analysis, and applying
formal modeling and analysis to the case studies provided by the industrial partners (see § 6.5.4).

8.2.2. Collaborations with Major European Organizations
The CONVECS project-team is member of the FMICS (Formal Methods for Industrial Critical Systems)
working group of ERCIM 9. H. Garavel and R. Mateescu are members of the FMICS board, H. Garavel being
in charge of dissemination actions.

8.3. International Initiatives
H. Garavel is a member of IFIP (International Federation for Information Processing) Technical Committee 1
(Foundations of Computer Science) Working Group 1.8 on Concurrency Theory chaired successively by Luca
Aceto and Jos Baeten.

8.3.1. Other International Collaborations
In 2015, we had scientific relations with several universities abroad, including:

• CWI, The Netherlands (Jurgen Vinju and Paul Klint),

• University of Málaga, Spain (F. Duran and C. Canal),

• University of Colorado, USA (Fabio Somenzi), and

• University of Utah, USA (Chris Myers and Zhen Zhang).

8.4. International Research Visitors
8.4.1. Visits of International Scientists

• The annual CONVECS seminar was held in Charavines (France) on May 27–29, 2015. The
following invited scientists attended the seminar:

– Eric Jenn (IRT Saint-Exupéry / Thales Avionics) gave on May 27, 2015 a talk entitled “The
INGEQUIP Project and the TwIRTee demonstrator”.

– Alexandre Hamez (IRT Saint-Exupéry) gave on May 29, 2015 a talk entitled “CAE-
SAR.SDD”.

• Chris Myers (University of Utah, USA) visited us from June 8–12, 2015. He gave a talk entitled “An
Integrated Verification Architecture” on June 9, 2015.

• Hernan Ponce de Leon (Aalto University, Finland) visited us from June 29 to July 1, 2015. He gave
a talk entitled “Unfolding Based Testing for Multithreaded Programs” on June 29, 2015.

8http://sensation-project.eu/
9http://fmics.inria.fr

http://sensation-project.eu/
http://fmics.inria.fr
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9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. Member of the organizing committees

• H. Garavel is a member of the model board of MCC’2015 (Model Checking Contest). In 2015, he
verified the forms describing the benchmark models and enhanced the format of these forms by
adding new model properties. He contributed to the formalization of the contest’s rules and to the
writing of the two contest calls (call for models and call for tools). He also participated in migrating
the PetriWeb model base (developed at the Technical University of Eindhoven) to the format and
conventions of the contest. A journal article describing the achievements of the 5th Model Checking
Contest has been written and submitted for publication.

• G. Salaün was a member of the organizing committee of SEFM’2015 (13th International Conference
on Software Engineering and Formal Methods), York, United Kingdom, September 7–11, 2015.

9.1.2. Scientific events selection
9.1.2.1. Chair of conference program committees

• G. Salaün was programme committee co-chair of SVT-SAC’2015 (the Software Verification Track
of the Symposium on Applied Computing), Salamanca, Spain, April 13–17, 2015.

9.1.2.2. Member of the conference program committees

• H. Garavel was program committee member of TACAS’2015 (21th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems), London, United Kingdom,
April 11–19, 2015.

• G. Salaün and W. Serwe were program committee members of FSEN’2015 (6th International
Conference on Fundamentals of Software Engineering), Tehran, Iran, April 22–24, 2015.

• H. Garavel was program committee member of DCDS’2015 (5th International Workshop on De-
pendable Control of Discrete Systems), Cancun, Mexico, May 27–29, 2015.

• G. Salaün was program committee member of ICE’2015 (8th Interaction and Concurrency Experi-
ence), Grenoble, France, June 4-5, 2015.

• F. Lang, R. Mateescu, and W. Serwe were program committee members of FMICS’2015 (20th
International Workshop on Formal Methods for Industrial Critical Systems), Oslo, Norway, June
22–23, 2015.

• G. Salaün was program committee member of WWV’2015 (11th International Workshop on Auto-
mated Specification and Verification of Web Systems), Oslo, Norway, June 23, 2015.

• F. Lang was program committee member of ETR’2015 (École d’été Temps Réel), Rennes, France,
August 24–28, 2015.

• H. Garavel and G. Salaün were program committee members of SEFM’2015 (13th International
Conference on Software Engineering and Formal Methods), York, United Kingdom, September
7–11, 2015.

• G. Salaün was program committee member of SCART’2015 (1st International Workshop on the ART
of Software Composition), York, United Kingdom, September 8, 2015.

• G. Salaün was program committee member of FACS’2015 (12th International conference on Formal
Aspects of Component Software), Rio de Janeiro, Brazil, October 14–16, 2015.

• H. Garavel was program committee member of MARS’2015 (Workshop on Models for Formal
Analysis of Real Systems), Suva, Fiji, November 23, 2015.

9.1.2.3. Reviewer



22 Activity Report INRIA 2015

• H. Garavel was a reviewer for CONCUR’2015 (26th Conference on Concurrency Theory), Madrid,
Spain, September 1–4, 2015.

• R. Mateescu was a reviewer for FORTE’2015 (35th IFIP International Conference on Formal
Techniques for Distributed Objects, Components and Systems), Grenoble, France, June 2–5, 2015.

• G. Salaün was a reviewer for SOCA’2015 (8th IEEE International Conference on Service Oriented
Computing and Applications), Rome, Italy, October 19–21, 2015.

• W. Serwe was a reviewer for ATVA’2015 (13th International Symposium on Automated Tech-
nology for Verification and Analysis, October 12–15, 2015, Shanghai, China), MARS’2015, and
TACAS’2016.

9.1.3. Journal
9.1.3.1. Member of the editorial boards

• H. Garavel is an editorial board member of STTT (Springer International Journal on Software Tools
for Technology Transfer).

• G. Salaün is an editorial board member of SOCA (Springer International Journal on Service
Oriented Computing and Applications).

9.1.3.2. Reviewer - Reviewing activities

• H. Garavel was a reviewer for the Mathematical Reviews (MathSciNet) of the American Mathemat-
ical Society.

• F. Lang was a reviewer for SOSYM (International Journal on Software and Systems Modeling).

• R. Mateescu was a reviewer for JISA (Journal of Internet Services and Applications), IEEE TSE
(Transactions on Software Engineering), JLAMP (Journal of Logical and Algebraic Methods in
Programming), FAoC (Formal Aspects of Computing), and STTT.

• G. Salaün was a reviewer for FAoC, JLAMP, JSS (Journal of Systems and Software), and MPE
(Mathematical Problems in Engineering).

9.1.4. Software Dissemination and Internet Visibility
The CONVECS project-team distributes several software tools: the CADP toolbox (see § 5.1), the TRAIAN
compiler, the PIC2LNT translator, and the PMC model checker (see § 5.2).

In 2015, the main facts are the following:

• We prepared and distributed twelve successive versions (2015-a to 2015-l) of CADP.

• We were requested to grant CADP licenses for 434 different computers in the world.

The CONVECS Web site 10 was updated with scientific contents, announcements, publications, etc. Following
a request from the computer staff of Inria Grenoble, we worked on the migration of the former Web site “http://
www.inrialpes.fr/vasy” to a more recent web infrastructure. This former site was split into three new, distinct
Web sites “http://vasy.inria.fr”, “http://cadp.inria.fr”, and “http://fmics.inria.fr”. Dedicated effort was made to
properly redirect all former URLs so as not to create dead links.

By the end of December 2015, the CADP forum 11, opened in 2007 for discussions regarding the CADP
toolbox, had over 350 registered users and over 1600 messages had been exchanged.

Also, for the 2015 edition of the Model Checking Contest, we provided two families of models (totalling 15
Nested-Unit Petri Nets) derived from our LNT models.

10http://convecs.inria.fr
11http://cadp.inria.fr/forum.html

http://www.inrialpes.fr/vasy
http://www.inrialpes.fr/vasy
http://vasy.inria.fr
http://cadp.inria.fr
http://fmics.inria.fr
http://convecs.inria.fr
http://cadp.inria.fr/forum.html
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Other research teams took advantage of the software components provided by CADP (e.g., the BCG and
OPEN/CAESAR environments) to build their own research software. We can mention the following develop-
ments:

• The Ocarina tool for analysing AADL descriptions [58]
• The MIstRAL tool for middleware reconfiguration based on formal methods [61]
• The DFTCalc tool for analysing dynamic fault trees [49]
• The Vercors integrated environment for verifying and running distributed components [52]
• The IMCReo tool for Interactive Markov Chains in Stochastic Reo [60]
• The GROOVE tool for verification based on graph rewriting [54]

Other teams also used the CADP toolbox for various case studies:
• Improving design patterns finder precision using model checking [34]
• Applying automata learning to embedded control software [62]
• Testing autonomous systems using communicating extended finite-state machines [32]
• Assisting refinement in system-on-chip design [59]
• Formal verification of plastic user interfaces exploiting domain ontologies [37]
• Action-based verification of a fire alarm system [35]

9.1.5. Awards and Distinctions
H. Garavel is an invited professor at Saarland University (Germany) as a holder of the Gay-Lussac Humboldt
Prize.

9.1.6. Invited talks
• G. Salaün gave a talk entitled “Reliable Deployment, Reconfiguration, and Control of Cloud

Applications” on February 12, 2015 at the University of Málaga, Spain.
• H. Garavel gave a talk entitled “Nested-Unit Petri Nets: A Useful Concept for PseuCo?” on March

9, 2015 at Saarland University, Saarbrücken, Germany.
• W. Serwe gave a talk entitled “Using a Formal Model to Improve Verification of a Cache-Coherent

System-on-Chip” on March 19, 2015 at the Cadence Club Formal, Grenoble, France.
• R. Mateescu gave a talk entitled “Overview of MCL, a Data-Based Model Checking Language” on

March 31, 2015 at Inria Grenoble — Rhône-Alpes, Montbonnot, France.
• G. Salaün gave a talk entitled “Reliable Deployment, Reconfiguration, and Control of Cloud

Applications” on March 26, 2015 at LIRMM, Montpellier, France.
• G. Salaün gave a talk entitled “Reliable Deployment, Reconfiguration, and Control of Cloud

Applications” on April 2, 2015 at LABRI, Bordeaux, France.
• G. Salaün gave a talk entitled “Verification of Asynchronously Communicating Systems” on April 9,

2015 at IRISA, Rennes, France.
• H. Garavel gave a talk entitled “Nested-Unit Petri Nets: Combining Hierarchy with Concurrency”

on May 6, 2015 at LIP6, Université Pierre et Marie Curie, Paris, France.
• G. Salaün gave a talk entitled “Formal Modelling and Analysis of BPMN Processes” on July 9, 2015

at XEROX, Meylan, France.
• F. Lang gave two talks entitled “Vérification de systèmes concurrents asynchrones par des méthodes

compositionnelles” and “CADP : une boîte à outils pour la construction et l’analyse de processus
distribués” on August 25, 2015 at ETR (Ecole d’Été Temps Réel), Rennes, France. He also held a
lab session on CADP.

• G. Salaün gave a talk entitled “Formal Modelling and Analysis of BPMN Processes” on October 27,
2015 at the University of Málaga, Spain.
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• H. Garavel gave a talk entitled “Les aspects probabilistes dans CADP” on December 8, 2015 at the
“Journées Inria” held at LIP6, Université Pierre et Marie Curie, Paris, France.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

CONVECS is a host team for the computer science master entitled “Mathématiques, Informatique, spécialité :
Systèmes et Logiciels”, common to Grenoble INP and University Joseph Fourier.

In 2015, we carried out the following teaching activities:
• G. Salaün is co-responsible of the ISI (Ingéniérie des Systèmes d’Information) department of

ENSIMAG since September 1, 2011.
• F. Lang gave a lecture on formal methods (6 hours) in the framework of the software engineering

course given to the first year students of the MOSIG (Master of Science in Informatics at Grenoble).
• G. Salaün gave lectures (192 hours “équivalent TD”) to computer science engineering students

of ENSIMAG (“École Nationale Supérieure d’Informatique et de Mathématiques Appliquées”,
Grenoble INP) on “Théorie des langages” (first year), “Programmation orientée objet” (second
year), and “Modélisation et vérification de systèmes concurrents” (thrid year). He also organized
a series of “Conférences technologiques” (third year).

• H. Garavel, together with Laurence Pierre (TIMA, Grenoble), created a new curriculum “High-
confidence Embedded and Cyberphysical Systems” of the international masters programme.

9.2.2. Supervision
• PhD: Hugues Evrard, “Génération automatique d’implémentation distribuée à partir de mod-

èles formels de processus concurrents asynchrones”, Université Grenoble-Alpes, July 10, 2015,
G. Salaün, F. Lang

• PhD: Abderahman Kriouile, “Formal Methods for Functional Verification of Cache-Coherent
System-on-Chip”, Université Grenoble-Alpes, September 17, 2015, R. Mateescu, W. Serwe,
M. Zendri

• PhD: Raquel Oliveira, “Formal Specification and Verification of Interactive Systems with Plastic-
ity: Applications to Nuclear-Plant Supervision”, Université Grenoble-Alpes, December 3, 2015,
H. Garavel, S. Dupuy-Chessa, G. Calvary, F. Lang

• PhD: Rim Sakka Abid, “Coordination et Reconfiguration des Applications Distribuées Cloud”,
Université Grenoble-Alpes, December 16, 2015, G. Salaün, N. de Palma

• PhD in progress: Fatma Jebali, “A Framework for the Formal Specification and Verification of
Globally Asynchronous Locally Synchronous Systems”, since December 2012, F. Lang, R. Mateescu

• PhD in progress: Gianluca Barbon, “Debugging Concurrent Programs using Model Checking and
Mining Techniques”, since October 2015, G. Salaün

9.2.3. Juries
• H. Garavel was member of the jury for David Lugato’s habilitation thesis, entitled “Formaliser par

la modelisation : Applications au calcul haute performance et à la génération de tests par exécution
symbolique”, defended at Université de Bordeaux, France, on March 5, 2015.

• W. Serwe was PhD committee member for Zhen Zhang’s PhD thesis, entitled “Verification Method-
ologies for Fault-Tolerant Network-on-Chip Systems”, defended at University of Utah, Salt Lake
City, USA, on October 26, 2015.

9.3. Popularization
H. Garavel participates to the committee in charge of organizing the Aerospace Valley series of industrial
conferences on formal methods.
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The fifth conference 12, devoted to testing, held on June 16 in Toulouse and retransmitted by video-conference
in Grenoble and Saclay, attracted participants from industry and academia. W. Serwe gave a talk (with Thierry
Jéron, Inria Rennes), entitled “TGV: Génération de tests de conformité à partir de modèles formels”, and a
talk (with Massimo Zendri, STMicroelectronics), entitled “Génération de tests basés sur les modèles pour des
systèmes sur puce avec cohérence de caches”.

The sixth conference 13, devoted to safety, is to be held on January 26, 2016.

9.4. Miscellaneous Activities
H. Evrard is a member of the council of the MSTII doctoral school.

H. Evrard and G. Salaün are members of the council of the LIG laboratory.

H. Garavel is a member of the LIG commission in charge of preparing candidates selected for recruitment
interviews at CNRS.

H. Garavel is an expert evaluator for Minalogic “pôle de compétitivité mondial”.

H. Garavel was a reviewer for various ongoing ANR (Agence Nationale de la Recherche) pre-propositions and
projects evaluated in 2015.

F. Lang is chair of the “Commission du développement technologique”, which is in charge of selecting R&D
projects for Inria Grenoble – Rhône-Alpes.

F. Lang is (together with Laurent Lefèvre from the AVALON Inria project-team) correspondent in charge of
the 2014 and 2015 Inria activity reports at Inria Grenoble Rhône-Alpes.

E. Léo and W. Serwe are members of the “Comité de centre” of Inria Grenoble – Rhône-Alpes.

R. Mateescu is the correspondent of the “Département des Partenariats Européens” for Inria Grenoble –
Rhône-Alpes.

R. Mateescu is a member of the “Comité d’orientation scientifique” for Inria Grenoble – Rhône-Alpes.

R. Mateescu is a member of the “Bureau” of the LIG laboratory.

G. Salaün is a member of the scientific council of Grenoble INP (Conseil scientifique de l’institut).

W. Serwe is “chargé de mission” for the scientific axis Formal Methods, Models, and Languages of the LIG
laboratory.
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