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2. Overall Objectives

2.1. Overview
The CONVECS project-team addresses the rigorous design of concurrent asynchronous systems using formal
methods and automated analysis. These systems comprise several activities that execute simultaneously
and autonomously (i.e., without the assumption about the existence of a global clock), synchronize, and
communicate to accomplish a common task. In computer science, asynchronous concurrency arises typically
in hardware, software, and telecommunication systems, but also in parallel and distributed programs.

Asynchronous concurrency is becoming ubiquitous, from the micro-scale of embedded systems (asynchronous
logic, networks-on-chip, GALS – Globally Asynchronous, Locally Synchronous systems, multi-core proces-
sors, etc.) to the macro-scale of grids and cloud computing. In the race for improved performance and lower
power consumption, computer manufacturers are moving towards asynchrony. This increases the complexity
of the design by introducing nondeterminism, thus requiring a rigorous methodology, based on formal methods
assisted by analysis and verification tools.
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There exist several approaches to formal verification, such as theorem proving, static analysis, and model
checking, with various degrees of automation. When dealing with asynchronous systems involving complex
data types, verification methods based on state space exploration (reachability analysis, model checking,
equivalence checking, etc.) are today the most successful way to detect design errors that could not be
found otherwise. However, these verification methods have several limitations: they are not easily accepted
by industry engineers, they do not scale well while the complexity of designs is ever increasing, and they
require considerable computing power (both storage capacity and execution speed). These are the challenges
that CONVECS seeks to address.

To achieve significant impact in the design and analysis of concurrent asynchronous systems, several research
topics must be addressed simultaneously. There is a need for user-friendly, intuitive, yet formal specification
languages that will be attractive to designers and engineers. These languages should provide for both functional
aspects (as needed by formal verification) and quantitative ones (to enable performance evaluation and
architecture exploration). These languages and their associated tools should be smoothly integrated into large-
scale design flows. Finally, verification tools should be able to exploit the parallel and distributed computing
facilities that are now ubiquitous, from desktop to high-performance computers.

3. Research Program

3.1. New Formal Languages and their Concurrent Implementations
We aim at proposing and implementing new formal languages for the specification, implementation, and
verification of concurrent systems. In order to provide a complete, coherent methodological framework, two
research directions must be addressed:

• Model-based specifications: these are operational (i.e., constructive) descriptions of systems, usually
expressed in terms of processes that execute concurrently, synchronize together and communicate.
Process calculi are typical examples of model-based specification languages. The approach we
promote is based on LOTOS NT (LNT for short), a formal specification language that incorporates
most constructs stemming from classical programming languages, which eases its acceptance by
students and industry engineers. LNT [35] is derived from the ISO standard E-LOTOS (2001),
of which it represents the first successful implementation, based on a source-level translation from
LNT to the former ISO standard LOTOS (1989). We are working both on the semantic foundations
of LNT (enhancing the language with module interfaces and timed/probabilistic/stochastic features,
compiling the m among n synchronization, etc.) and on the generation of efficient parallel and
distributed code. Once equipped with these features, LNT will enable formally verified asynchronous
concurrent designs to be implemented automatically.

• Property-based specifications: these are declarative (i.e., non-constructive) descriptions of systems,
which express what a system should do rather than how the system should do it. Temporal logics
and µ-calculi are typical examples of property-based specification languages. The natural models
underlying value-passing specification languages, such as LNT, are Labeled Transition Systems
(LTSs or simply graphs) in which the transitions between states are labeled by actions containing
data values exchanged during handshake communications. In order to reason accurately about these
LTSs, temporal logics involving data values are necessary. The approach we promote is based on
MCL (Model Checking Language) [56], which extends the modal µ-calculus with data-handling
primitives, fairness operators encoding generalized Büchi automata, and a functional-like language
for describing complex transition sequences. We are working both on the semantic foundations of
MCL (extending the language with new temporal and hybrid operators, translating these operators
into lower-level formalisms, enhancing the type system, etc.) and also on improving the MCL on-
the-fly model checking technology (devising new algorithms, enhancing ergonomy by detecting and
reporting vacuity, etc.).
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We address these two directions simultaneously, yet in a coherent manner, with a particular focus on applicable
concurrent code generation and computer-aided verification.

3.2. Parallel and Distributed Verification
Exploiting large-scale high-performance computers is a promising way to augment the capabilities of formal
verification. The underlying problems are far from trivial, making the correct design, implementation, fine-
tuning, and benchmarking of parallel and distributed verification algorithms long-term and difficult activities.
Sequential verification algorithms cannot be reused as such for this task: they are inherently complex, and their
existing implementations reflect several years of optimizations and enhancements. To obtain good speedup
and scalability, it is necessary to invent new parallel and distributed algorithms rather than to attempt a
parallelization of existing sequential ones. We seek to achieve this objective by working along two directions:

• Rigorous design: Because of their high complexity, concurrent verification algorithms should them-
selves be subject to formal modeling and verification, as confirmed by recent trends in the certifi-
cation of safety-critical applications. To facilitate the development of new parallel and distributed
verification algorithms, we promote a rigorous approach based on formal methods and verification.
Such algorithms will be first specified formally in LNT, then validated using existing model checking
algorithms of the CADP toolbox. Second, parallel or distributed implementations of these algorithms
will be generated automatically from the LNT specifications, enabling them to be experimented on
large computing infrastructures, such as clusters and grids. As a side-effect, this “bootstrapping”
approach would produce new verification tools that can later be used to self-verify their own design.

• Performance optimization: In devising parallel and distributed verification algorithms, particular
care must be taken to optimize performance. These algorithms will face concurrency issues at sev-
eral levels: grids of heterogeneous clusters (architecture-independence of data, dynamic load balanc-
ing), clusters of homogeneous machines connected by a network (message-passing communication,
detection of stable states), and multi-core machines (shared-memory communication, thread syn-
chronization). We will seek to exploit the results achieved in the parallel and distributed computing
field to improve performance when using thousands of machines by reducing the number of connec-
tions and the messages exchanged between the cooperating processes carrying out the verification
task. Another important issue is the generalization of existing LTS representations (explicit, implicit,
distributed) in order to make them fully interoperable, such that compilers and verification tools can
handle these models transparently.

3.3. Timed, Probabilistic, and Stochastic Extensions
Concurrent systems can be analyzed from a qualitative point of view, to check whether certain properties
of interest (e.g., safety, liveness, fairness, etc.) are satisfied. This is the role of functional verification, which
produces Boolean (yes/no) verdicts. However, it is often useful to analyze such systems from a quantitative
point of view, to answer non-functional questions regarding performance over the long run, response time,
throughput, latency, failure probability, etc. Such questions, which call for numerical (rather than binary)
answers, are essential when studying the performance and dependability (e.g., availability, reliability, etc.) of
complex systems.

Traditionally, qualitative and quantitative analyzes are performed separately, using different modeling lan-
guages and different software tools, often by distinct persons. Unifying these separate processes to form a
seamless design flow with common modeling languages and analysis tools is therefore desirable, for both sci-
entific and economic reasons. Technically, the existing modeling languages for concurrent systems need to be
enriched with new features for describing quantitative aspects, such as probabilities, weights, and time. Such
extensions have been well-studied and, for each of these directions, there exist various kinds of automata,
e.g., discrete-time Markov chains for probabilities, weighted automata for weights, timed automata for hard
real-time, continuous-time Markov chains for soft real-time with exponential distributions, etc. Nowadays, the
next scientific challenge is to combine these individual extensions altogether to provide even more expressive
models suitable for advanced applications.
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Many such combinations have been proposed in the literature, and there is a large amount of models adding
probabilities, weights, and/or time. However, an unfortunate consequence of this diversity is the confuse
landscape of software tools supporting such models. Dozens of tools have been developed to implement
theoretical ideas about probabilities, weights, and time in concurrent systems. Unfortunately, these tools do
not interoperate smoothly, due both to incompatibilities in the underlying semantic models and to the lack of
common exchange formats.

To address these issues, CONVECS follows two research directions:
• Unifying the semantic models. Firstly, we will perform a systematic survey of the existing semantic

models in order to distinguish between their essential and non-essential characteristics, the goal
being to propose a unified semantic model that is compatible with process calculi techniques for
specifying and verifying concurrent systems. There are already proposals for unification either
theoretical (e.g., Markov automata) or practical (e.g., PRISM and MODEST modeling languages),
but these languages focus on quantitative aspects and do not provide high-level control structures
and data handling features (as LNT does, for instance). Work is therefore needed to unify process
calculi and quantitative models, still retaining the benefits of both worlds.

• Increasing the interoperability of analysis tools. Secondly, we will seek to enhance the interoperabil-
ity of existing tools for timed, probabilistic, and stochastic systems. Based on scientific exchanges
with developers of advanced tools for quantitative analysis, we plan to evolve the CADP toolbox as
follows: extending its perimeter of functional verification with quantitative aspects; enabling deeper
connections with external analysis components for probabilistic, stochastic, and timed models; and
introducing architectural principles for the design and integration of future tools, our long-term goal
being the construction of a European collaborative platform encompassing both functional and non-
functional analyzes.

3.4. Component-Based Architectures for On-the-Fly Verification
On-the-fly verification fights against state explosion by enabling an incremental, demand-driven exploration
of LTSs, thus avoiding their entire construction prior to verification. In this approach, LTS models are
handled implicitly by means of their post function, which computes the transitions going out of given states
and thus serves as a basis for any forward exploration algorithm. On-the-fly verification tools are complex
software artifacts, which must be designed as modularly as possible to enhance their robustness, reduce their
development effort, and facilitate their evolution. To achieve such a modular framework, we undertake research
in several directions:

• New interfaces for on-the-fly LTS manipulation. The current application programming interface
(API) for on-the-fly graph manipulation, named OPEN/CAESAR [42], provides an “opaque”
representation of states and actions (transitions labels): states are represented as memory areas of
fixed size and actions are character strings. Although appropriate to the pure process algebraic
setting, this representation must be generalized to provide additional information supporting an
efficient construction of advanced verification features, such as: handling of the types, functions, data
values, and parallel structure of the source program under verification, independence of transitions
in the LTS, quantitative (timed/probabilistic/stochastic) information, etc.

• Compositional framework for on-the-fly LTS analysis. On-the-fly model checkers and equivalence
checkers usually perform several operations on graph models (LTSs, Boolean graphs, etc.), such
as exploration, parallel composition, partial order reduction, encoding of model checking and
equivalence checking in terms of Boolean equation systems, resolution and diagnostic generation
for Boolean equation systems, etc. To facilitate the design, implementation, and usage of these
functionalities, it is necessary to encapsulate them in software components that could be freely
combined and replaced. Such components would act as graph transformers, that would execute (on
a sequential machine) in a way similar to coroutines and to the composition of lazy functions in
functional programming languages. Besides its obvious benefits in modularity, such a component-
based architecture will also make it possible to take advantage of multi-core processors.
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• New generic components for on-the-fly verification. The quest for new on-the-fly components for
LTS analysis must be pursued, with the goal of obtaining a rich catalog of interoperable components
serving as building blocks for new analysis features. A long-term goal of this approach is to provide
an increasingly large catalog of interoperable components covering all verification and analysis
functionalities that appear to be useful in practice. It is worth noticing that some components can
be very complex pieces of software (e.g., the encapsulation of an on-the-fly model checker for a
rich temporal logic). Ideally, it should be possible to build a novel verification or analysis tool by
assembling on-the-fly graph manipulation components taken from the catalog. This would provide
a flexible means of building new verification and analysis tools by reusing generic, interoperable
model manipulation components.

3.5. Real-Life Applications and Case Studies
We believe that theoretical studies and tool developments must be confronted with significant case studies to
assess their applicability and to identify new research directions. Therefore, we seek to apply our languages,
models, and tools for specifying and verifying formally real-life applications, often in the context of industrial
collaborations.

4. Application Domains

4.1. Application Domains
The theoretical framework we use (automata, process algebras, bisimulations, temporal logics, etc.) and the
software tools we develop are general enough to fit the needs of many application domains. They are applicable
to virtually any system or protocol that consists of distributed agents communicating by asynchronous
messages. The list of recent case studies performed with the CADP toolbox (see in particular § 6.5) illustrates
the diversity of applications:

• Bioinformatics: genetic regulatory networks, nutritional stress response, metabolic pathways,

• Component-based systems: Web services, peer-to-peer networks,

• Databases: transaction protocols, distributed knowledge bases, stock management,

• Distributed systems: virtual shared memory, dynamic reconfiguration algorithms, fault tolerance
algorithms, cloud computing,

• Embedded systems: air traffic control, avionic systems, medical devices,

• Hardware architectures: multiprocessor architectures, systems on chip, cache coherency protocols,
hardware/software codesign,

• Human-machine interaction: graphical interfaces, biomedical data visualization, plasticity,

• Security protocols: authentication, electronic transactions, cryptographic key distribution,

• Telecommunications: high-speed networks, network management, mobile telephony, feature inter-
action detection.

5. New Software and Platforms

5.1. The CADP Toolbox
Participants: Hubert Garavel [correspondent], Frédéric Lang, Radu Mateescu, Wendelin Serwe.
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We maintain and enhance CADP (Construction and Analysis of Distributed Processes – formerly known
as CAESAR/ALDEBARAN Development Package) [1], a toolbox for protocols and distributed systems
engineering 1. In this toolbox, we develop and maintain the following tools:

• CAESAR.ADT [41] is a compiler that translates LOTOS abstract data types into C types and
C functions. The translation involves pattern-matching compiling techniques and automatic recog-
nition of usual types (integers, enumerations, tuples, etc.), which are implemented optimally.

• CAESAR [47], [46] is a compiler that translates LOTOS processes into either C code (for rapid
prototyping and testing purposes) or finite graphs (for verification purposes). The translation is done
using several intermediate steps, among which the construction of a Petri net extended with typed
variables, data handling features, and atomic transitions.

• OPEN/CAESAR [42] is a generic software environment for developing tools that explore graphs on
the fly (for instance, simulation, verification, and test generation tools). Such tools can be developed
independently of any particular high level language. In this respect, OPEN/CAESAR plays a central
role in CADP by connecting language-oriented tools with model-oriented tools. OPEN/CAESAR
consists of a set of 16 code libraries with their programming interfaces, such as:

– CAESAR_GRAPH, which provides the programming interface for graph exploration,

– CAESAR_HASH, which contains several hash functions,

– CAESAR_SOLVE, which resolves Boolean equation systems on the fly,

– CAESAR_STACK, which implements stacks for depth-first search exploration, and

– CAESAR_TABLE, which handles tables of states, transitions, labels, etc.

A number of on-the-fly analysis tools have been developed within the OPEN/CAESAR environment,
among which:

– BISIMULATOR, which checks bisimulation equivalences and preorders,

– CUNCTATOR, which performs steady-state simulation of continuous-time Markov
chains,

– DETERMINATOR, which eliminates stochastic nondeterminism in normal, probabilistic,
or stochastic systems,

– DISTRIBUTOR, which generates the graph of reachable states using several machines,

– EVALUATOR, which evaluates MCL formulas,

– EXECUTOR, which performs random execution,

– EXHIBITOR, which searches for execution sequences matching a given regular expres-
sion,

– GENERATOR, which constructs the graph of reachable states,

– PROJECTOR, which computes abstractions of communicating systems,

– REDUCTOR, which constructs and minimizes the graph of reachable states modulo
various equivalence relations,

– SIMULATOR, XSIMULATOR, and OCIS, which enable interactive simulation, and

– TERMINATOR, which searches for deadlock states.

• BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using
efficient compression techniques) and a software environment for handling this format. BCG also
plays a key role in CADP as many tools rely on this format for their inputs/outputs. The BCG
environment consists of various libraries with their programming interfaces, and of several tools,
such as:

– BCG_CMP, which compares two graphs,

1http://cadp.inria.fr

http://cadp.inria.fr
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– BCG_DRAW, which builds a two-dimensional view of a graph,
– BCG_EDIT, which allows the graph layout produced by BCG_DRAW to be modified

interactively,
– BCG_GRAPH, which generates various forms of practically useful graphs,
– BCG_INFO, which displays various statistical information about a graph,
– BCG_IO, which performs conversions between BCG and many other graph formats,
– BCG_LABELS, which hides and/or renames (using regular expressions) the transition

labels of a graph,
– BCG_MIN, which minimizes a graph modulo strong or branching equivalences (and can

also deal with probabilistic and stochastic systems),
– BCG_STEADY, which performs steady-state numerical analysis of (extended) continuous-

time Markov chains,
– BCG_TRANSIENT, which performs transient numerical analysis of (extended)

continuous-time Markov chains, and
– XTL (eXecutable Temporal Language), which is a high level, functional language for

programming exploration algorithms on BCG graphs. XTL provides primitives to handle
states, transitions, labels, successor and predecessor functions, etc.

For instance, one can define recursive functions on sets of states, which allow evaluation
and diagnostic generation fixed point algorithms for usual temporal logics (such as HML
[51], CTL [37], ACTL [39], etc.) to be defined in XTL.

• PBG (Partitioned BCG Graph) is a file format implementing the theoretical concept of Partitioned
LTS [45] and providing a unified access to a graph partitioned in fragments distributed over a set
of remote machines, possibly located in different countries. The PBG format is supported by several
tools, such as:

– PBG_CP, PBG_MV, and PBG_RM, which facilitate standard operations (copying, mov-
ing, and removing) on PBG files, maintaining consistency during these operations,

– PBG_MERGE (formerly known as BCG_MERGE), which transforms a distributed graph
into a monolithic one represented in BCG format,

– PBG_INFO, which displays various statistical information about a distributed graph.
• The connection between explicit models (such as BCG graphs) and implicit models (explored on the

fly) is ensured by OPEN/CAESAR-compliant compilers, e.g.:
– BCG_OPEN, for models represented as BCG graphs,
– CAESAR.OPEN, for models expressed as LOTOS descriptions,
– EXP.OPEN, for models expressed as communicating automata,
– FSP.OPEN, for models expressed as FSP [55] descriptions,
– LNT.OPEN, for models expressed as LNT descriptions, and
– SEQ.OPEN, for models represented as sets of execution traces.

The CADP toolbox also includes TGV (Test Generation based on Verification), which has been developed by
the VERIMAG laboratory (Grenoble) and the VERTECS project-team at Inria Rennes – Bretagne-Atlantique.

The CADP tools are well-integrated and can be accessed easily using either the EUCALYPTUS graphical
interface or the SVL [43] scripting language. Both EUCALYPTUS and SVL provide users with an easy and
uniform access to the CADP tools by performing file format conversions automatically whenever needed and
by supplying appropriate command-line options as the tools are invoked.

5.2. The TRAIAN Compiler
Participants: Hubert Garavel [correspondent], Frédéric Lang, Wendelin Serwe.
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We develop a compiler named TRAIAN for translating LOTOS NT descriptions into C programs, which will
be used for simulation, rapid prototyping, verification, and testing.

The current version of TRAIAN, which handles LOTOS NT types and functions only, has useful applications
in compiler construction [44], being used in all recent compilers developed by CONVECS.

The TRAIAN compiler can be freely downloaded from the CONVECS Web site 2.

5.3. The PIC2LNT Translator
Participants: Radu Mateescu, Gwen Salaün [correspondent].

We develop a translator named PIC2LNT from an applied π-calculus (see § 6.1) to LNT, which enables the
analysis of concurrent value-passing mobile systems using CADP.

PIC2LNT is developed by using the SYNTAX tool (developed at Inria Paris-Rocquencourt) for lexical and
syntactic analysis together with LOTOS NT for semantical aspects, in particular the definition, construction,
and traversal of abstract trees.

The PIC2LNT translator can be freely downloaded from the CONVECS Web site 3.

5.4. The PMC Partial Model Checker
Participants: Radu Mateescu, Frédéric Lang.

We develop a tool named PMC (Partial Model Checker, see § 6.4), which performs the compositional model
checking of dataless MCL formulas on networks of communicating automata described in the EXP language.

PMC can be freely downloaded from the CONVECS Web site 4.

6. New Results

6.1. New Formal Languages and their Implementations
LNT is a next generation formal description language for asynchronous concurrent systems, which attempts
to combine the best features of imperative programming languages and value-passing process algebras. LNT
is increasingly used by CONVECS for industrial case studies and applications (see § 6.5) and serves also in
university courses on concurrency, in particular at ENSIMAG (Grenoble) and at Saarland University.

6.1.1. Translation from LNT to LOTOS
Participants: Hubert Garavel, Frédéric Lang, Wendelin Serwe.

In 2014, the translator from LNT to LOTOS was further improved. In addition to bug fixes and removal of
incorrect warnings emitted by the translator itself or by the C compiler on the generated code, the following
enhancements have been brought: the LNT language was extended with a “!representedby” pragma for
processes, and a “only if” statement to concisely express guarded commands; the translator now performs
static analysis and warns about unused variables, unused “in” or “in out” parameters, useless (deterministic
or nondeterministic) assignments to variables, “in out” parameters that are never assigned, and dubious
synchronizations between processes; checks for underflow/overflow on natural and integer numbers are now
activated by default. The translator also generates better LOTOS code, and the LNT reference manual was
shortened and updated in many places.

6.1.2. Translation from LOTOS to Petri nets and C
Participants: Hubert Garavel, Wendelin Serwe.

2http://convecs.inria.fr/software/traian
3http://convecs.inria.fr/software/pic2lnt
4http://convecs.inria.fr/software/pmc

http://convecs.inria.fr/software/traian
http://convecs.inria.fr/software/pic2lnt
http://convecs.inria.fr/software/pmc
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The LOTOS compilers CAESAR and CAESAR.ADT, which were once the flagship of CADP, now play a
more discrete role since LNT (rather than LOTOS) has become the recommended specification language
of CADP. Thus, CAESAR and CAESAR.ADT are mostly used as back-end translators for LOTOS programs
automatically generated from LNT or other formalisms such as Fiacre, and are only modified when this appears
to be strictly necessary.

In 2014, the CAESAR compiler has been modified to tolerate LOTOS specifications that would be normally
rejected under the ISO/IEC 8807 standard definition of LOTOS. The first change extends the visibility scope
of local definitions when the global definitions are empty. The second change uses the type information of
process definitions to better resolve overloading ambiguities in expressions passed as actual parameters to
process calls.

Conversely, CAESAR was made stricter by rejecting at compile-time LOTOS specifications containing out-
of-bound constants, even if such constants are never used.

Performance has been increased by adding or strengthening a number of optimizations concerning, e.g.,
internal data structures, Boolean guards that can be statically evaluated, values belonging to singleton sorts,
disconnected or otherwise unreachable Petri net places and transitions, etc.

The CAESAR.BDD tool of CADP, which analyzes hierarchical Petri nets generated from higher-level
specifications (e.g., LOTOS or LNT) has been significantly enhanced. The semantic model accepted by
CAESAR.BDD has been made more general and given the new name of NUPN (Nested-Units Petri Nets).
The definition and theoretical properties of NUPN have been formalized.

The textual syntax for NUPN has been extended with pragmas intended to retain useful properties of non-
ordinary and/or non-safe Petri nets translated to NUPN. An XML syntax for NUPN (compatible with the ISO
standard PNML for the representation of Petri nets) has been defined and adopted by the Model Checking
Contest 5. A translator from PNML to NUPN has been developed at LIP6 (Paris, France).

The CAESAR.BDD tool has been updated accordingly, and extended to perform stricter checks and compute
more structural and behavioral properties of NUPN models. CAESAR.BDD has been intensively used to
correct the descriptions of the Model Checking Contest benchmarks: a first campaign (January-February 2014)
detected 9 errors in structural properties and 8 errors in behavioral properties, and a second campaign (April
2014) revealed 23 more errors. CAESAR.BDD has also been used to automatically generate new benchmarks,
together with their descriptions.

6.1.3. Translation from GRL to LNT
Participants: Fatma Jebali, Frédéric Lang, Eric Léo, Radu Mateescu.

In the context of the Bluesky project (see § 8.1.2.1), we study the formal modeling of GALS (Globally Asyn-
chronous, Locally Synchronous) systems, which are composed of several synchronous subsystems evolving
cyclically, each at its own pace, and communicating with each other asynchronously. Designing GALS systems
is challenging due to both the high level of (synchronous and asynchronous) concurrency and the heterogene-
ity of computations (deterministic and nondeterministic). To bring our formal verification techniques and tools
closer to the GALS paradigm, we designed a new formal language named GRL (GALS Representation Lan-
guage), as an intermediate format between GALS models and purely asynchronous concurrent models. GRL
combines the main features of synchronous dataflow programming and asynchronous process calculi into one
unified language, while keeping the syntax homogeneous for better acceptance by industrial GALS designers.
GRL allows a modular composition of synchronous systems (blocks), environmental constraints (environ-
ments), and asynchronous communication mechanisms (mediums), to be described at a level of abstraction
that is appropriate to verification. GRL also supports external C and LNT code.

In 2014, we have continued to enhance the syntax and the formal semantics of GRL. We have written a detailed
research report (82 pages) [25] containing the complete definition of the syntax, static semantics, and dynamic
semantics (in the form of structural operational semantics rules), and also illustrating the checking of dynamic

5http://mcc.lip6.fr/nupn.php

http://mcc.lip6.fr/nupn.php
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semantics rules on several examples of GRL programs. A paper describing GRL has been published in an
international conference [14].

To equip GRL with verification features, we formally defined a translation from GRL to LNT. GRL blocks are
translated into LNT functions, possibly encapsulated within LNT wrapper processes to enable asynchronous
communication, whereas GRL environments and mediums are directly translated into LNT processes. The
asynchronous composition of blocks, environments, and mediums is translated to an LNT parallel composition
of the corresponding processes.

Using the SYNTAX and LOTOS NT compiler construction technology [44], we have developed a translator
named GRL2LNT (about 25, 000 lines of code), allowing an LNT program to be generated from a GRL
specification automatically. GRL2LNT performs the lexical and syntactic analysis of GRL programs, together
with almost all static semantic checks specified in its formal definition [25]. A stable version of GRL2LNT has
been released in 2014. Additionally, we have developed an OPEN/CAESAR-compliant compiler GRL.OPEN
(based on GRL2LNT and LNT.OPEN), which makes possible the on-the-fly exploration of the LTS underlying
a GRL specification using CADP. We have also built a test base containing about 250 (correct and incorrect)
GRL programs, and used it for non-regression testing of GRL2LNT. The correct GRL programs represent
about 7, 000 lines of code and produce about 18, 000 lines of LNT code after translation using GRL2LNT.

A paper describing the formal verification of GALS systems using GRL and CADP, with a focus on the
translation from GRL to LNT, has been submitted to an international conference [28].

6.1.4. Coverage Analysis for LNT
Participants: Gwen Salaün, Lina Ye.

In the classic verification setting, the designer has a specification of a system in a value-passing process
algebra, a set of temporal properties to be verified on the corresponding LTS model, and a data set of examples
(test cases) for validation purposes. At this stage, building the set of validation examples and debugging the
specification is a complicated task, in particular for non-experts.

We propose a new framework for debugging value-passing process algebra through coverage analysis and we
illustrate our approach with LNT. We define several coverage notions before showing how to instrument the
specification without affecting original behaviors. Our approach helps one to improve the quality of a data set
of examples used for validation purposes, but also to find ill-formed decisions, dead code, and other errors
in the specification. We have implemented a tool for automating our debugging approach, and applied it to
several real-world case studies in different application areas.

In 2014, a paper has been accepted in an international conference [19].

6.1.5. Other Language Developments
Participants: Hugues Evrard, Hubert Garavel, Frédéric Lang, Eric Léo, Wendelin Serwe.

The ability to compile and verify formal specifications with complex, user-defined operations and data
structures is a key feature of the CADP toolbox since its very origins. A long-run effort has been recently
undertaken to ensure a uniform treatment of types, values, and functions across all the various CADP tools.

In 2014, convergence between the LOTOS, LNT, BCG, and XTL data-type libraries has been increased by
defining common libraries for eight predefined types: Boolean, Natural, Integer, Real, Character, String, Raw,
and Gate. These libraries gather in the same place definitions of types, constants, and functions that were
previously disseminated across different tools. Additionally, systematic checks for underflows and overflows
have been set for the Natural and Integer types. Also, unprintable characters and C-like escape sequences are
now uniformly handled by the Character, String, and Raw types.

To support the LNT language in the Emacs/XEmacs, jEdit, and Vim editors, configuration files have been
added or updated, which provide for syntax highlighting/coloring, and enable autocompletion in Emacs using
YASnippet.
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6.2. Parallel and Distributed Verification
6.2.1. Distributed Code Generation for LNT

Participants: Hugues Evrard, Frédéric Lang.

Rigorous development and prototyping of a distributed verification algorithm in LNT involves the automatic
generation of a distributed implementation. For the latter, a protocol realizing process synchronization is
required. As far as possible, this protocol must itself be distributed, so as to avoid the bottleneck that would
inevitably arise if a unique process would have to manage all synchronizations in the system. A particularity of
such a protocol is its ability to support branching synchronizations, corresponding to situations where a process
may offer a choice of synchronizing actions (which themselves may nondeterministically involve several sets
of synchronizing processes) instead of a single one. Therefore, a classical barrier protocol is not sufficient and
a more elaborate synchronization protocol is needed.

Using a synchronization protocol that we verified formally in 2013, we developed a prototype distributed code
generator, named DLC (Distributed LNT Compiler), which takes as input the model of a distributed system
described as a parallel composition of LNT processes.

In 2014, we continued the development of DLC. We improved the performances of DLC generated code by
reducing the number of protocol messages when one or several processes are ready on a single gate. We
experimented this optimization on a set of processes running on different computers and synchronizing all
together on a single barrier interaction (i.e., all processes are ready on a single gate). In this situation, DLC
now generates code that is faster than Java or Erlang.

The distributed program generated by DLC would be of little interest if it could not interact with its
environment (e.g., users through human-computer interfaces, or other systems, such as databases, Web
services, etc.). Therefore, we designed a mechanism to embed user-defined C functions, called hook functions,
into the code generated by DLC. Hook functions are triggered on events related to actions in the system.
This allows system actions to be, e.g., monitored by the user or controlled by external conditions. Using hook
functions, the code generated by DLC can thus both take an account of and have an effect on its environment.

In order to demonstrate DLC on a real-world example, we applied it to the recent Raft 6 consensus algorithm
[60]. We wrote an LNT specification of a simple key-value store made fault tolerant by replication of
commands using the Raft consensus algorithm. During the modeling phase, we found a missing transition
in the TLA+ specification of the protocol. We signaled it to the authors 7, who corrected the TLA+
specification. We used hook functions to implement interaction with the replicated store from external clients.
The distributed implementation generated by DLC was successfully tested on clusters of the Grid5000
platform. We presented an overview of DLC, the hook functions and the Raft experiment in an article that
has been accepted for publication in an international conference [12].

6.3. Timed, Probabilistic, and Stochastic Extensions
6.3.1. Model Checking for Extended PCTL

Participants: Hubert Garavel, Radu Mateescu, Jose Ignacio Requeno.

In the context of the SENSATION project (see § 8.2.1.1), we study the specification and verification of
quantitative properties of concurrent systems.

In 2014, we defined an extension of PCTL (Probabilistic Computation Tree Logic) [49] with the manipulation
of data values and actions. This logic is interpreted on extended DTMCs (Discrete-Time Markov Chains)
containing visible transitions, labeled with channel names and data values, in addition to probabilistic
transitions. Extended PCTL makes possible the specification of temporal properties involving discrete time,
probabilities, and data values.

6http://raftconsensus.github.io
7https://groups.google.com/forum/#!topic/raft-dev/yu-wOUx-gnA

http://raftconsensus.github.io
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We devised a prototype model checker for extended PCTL in the form of an XTL library describing the
denotational semantics of all PCTL operators (both primitive and derived ones), accompanied by external
C code implementing the algorithms for LTS exploration and numerical computation of probabilities. The
high-level programming language constructs of XTL (iterators, sets in comprehension, parameterized macro-
definitions) allowed us to easily implement the advanced features (filters on arithmetic and logical operators,
computation of probabilities, experiments over data series, etc.) of established probabilistic model checkers,
such as PRISM [54]. Also, the manipulation of data values in XTL allows one to specify properties in
which probabilities and discrete time deadlines depend on the values of state variables, a feature currently
not provided by PRISM.

To experiment and cross-check our extended PCTL library w.r.t. PRISM, we developed an automated translator
from the (state-based) DTMCs used by PRISM into the (action-based) DTMCs in BCG format used by CADP.
State information is represented by means of special self-looping transitions containing the values of state
variables, which are properly handled during the evaluation of probabilistic temporal operators.

The experiments we performed with our extended PCTL library on various examples of DTMCs (produced
from communication protocols, chemical reactions, hazard games, etc.) showed a performance comparable to
(explicit-state) PRISM for pure PCTL formulas.

Furthermore, in addition to many bug fixes, the XTL compiler and its XTL_EXPAND preprocessor have been
strengthened to better detect and report potential mistakes in source XTL specifications. In particular, vacuity
checks have been introduced, which warn the user when no label in a BCG graph has the right number of
fields or the appropriate field types to satisfy an XTL label match expression (previously, this expression
would silently evaluate to false).

The type checking system of XTL and its list of predefined functions have been extended to support the new
Natural and Raw types of the BCG format, and to properly distinguish between Natural and Integer values,
and Raw and String values, while achieving a high degree of backward compatibility. In particular, XTL now
uses type information from the BCG labels to better solve overloading in label offers, so that certain XTL
programs that were formerly invalid are now accepted. Finally, it is now possible to use the predefined types
and functions of XTL when defining temporal operators directly using external C code.

6.4. Component-Based Architectures for On-the-Fly Verification
6.4.1. Property-Dependent Reductions for the Modal Mu-Calculus

Participant: Radu Mateescu.

In collaboration with Anton Wijs (Technical University of Eindhoven), we proposed a new method for
enhancing the performance of model checking a temporal formula on an LTS by reducing the LTS as much
as possible depending on the formula prior to (or simultaneously with) the verification. Given an LTS and a
formula, the method consists of two steps:

• The maximal set of actions that one can hide (i.e., rename into the internal action τ ) in the LTS
without disturbing the interpretation of the formula is computed, and those actions are hidden in
the LTS. This works for any formula of the full modal µ-calculus (i.e., of arbitrary alternation
depth) and provides the highest potential for reducing the LTS, and hence for improving verification
performance, w.r.t. that formula.

• The LTS is reduced modulo an equivalence relation preserving the formula. The reduction can be
done before verification, either by constructing the LTS explicitly and using the direct minimization
features provided by the BCG_MIN tool, or by constructing the minimized LTS incrementally using
the compositional verification features provided by EXP.OPEN and SVL. The reduction can be also
done simultaneously during verification, by detecting τ -confluent transitions and prioritizing them
against their neighbors.
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We defined a µ-calculus fragment, named Lµ-dsbr, and shown its adequacy w.r.t. divergence-sensitive
branching bisimulation (divbranching for short). We also shown that Lµ-dsbr is equally expressive to the
µ-ACTLrX logic, an extension of ACTLrX (Action-based CTL without the next time operator) with fixed
point operators [39], [40]. This result also implies the adequacy w.r.t. divbranching of µ-ACTLrX, which
was previously shown to be adequate w.r.t. strong bisimulation.

We experimented our method using the EVALUATOR model checker on various examples of protocols and
distributed systems, by specifying the temporal properties in MCL and reducing the LTSs modulo strong
and divbranching bisimulation. The experiments showed performance enhancements both in execution time
(reduction by a factor 4 for strong bisimulation and 20 for divbranching) and memory consumption (reduction
by a factor 2 for strong bisimulation and 5 for divbranching).

We also built a prototype MCL library regrouping the temporal operators of ACTLrX (which were already
present in CADP) and the modal and temporal operators of Lµ-dsbr (which were newly added). Used in
conjunction with the Boolean and fixed point operators of MCL, the operators of this library can be used
to specify temporal formulas adequate w.r.t. divbranching, which allows one to reduce the LTS modulo this
equivalence (after applying maximal hiding) and to increase the performance of verification accordingly. An
article has been published in an international journal [8].

6.4.2. Compositional Verification
Participants: Hubert Garavel, Frédéric Lang.

The CADP toolbox contains various tools dedicated to compositional verification, among which EXP.OPEN,
BCG_MIN, BCG_CMP, and SVL play a central role. EXP.OPEN explores on the fly the graph corresponding
to a network of communicating automata (represented as a set of BCG files). BCG_MIN and BCG_CMP
respectively minimize and compare behavior graphs modulo strong or branching bisimulation and their
stochastic extensions. SVL (Script Verification Language) is both a high-level language for expressing
complex verification scenarios and a compiler dedicated to this language.

In 2014, we corrected 2 bugs in EXP.OPEN, 6 bugs in BCG_MIN and BCG_CMP, and 5 bugs in SVL. We
also enhanced these tools as follows:

• We corrected the diagnostic generation algorithm of BCG_CMP, which sometimes generated irrele-
vant diagnostics.

• We improved the messages displayed by SVL and EXP.OPEN when generating an LTS from a
composition expression using the smart reduction strategy [38], so that the user can follow more
easily the selected composition order.

• Following the recent progress made on the development of the language LNT (see § 6.1), the syntax
of the SVL and EXP languages for comments, gate typing, and the “par”, “hide”, “rename”,
“cut”, and “prio” operators was extended to be compatible with the syntax of LNT. This enables
composition expressions (including comments, channel typing, etc.) copied from LNT programs to
be pasted in SVL scripts while requiring as few syntactic changes as possible.

• The “verify” operator has been generalized to give access to all three model checkers of CADP
(EVALUATOR 3, EVALUATOR 4, and XTL). A new statement “|=” has been added to SVL, which
enables MCL and XTL formulas to be directly written in an SVL script, rather than being stored in
external files.

• To provide for requirements expression and traceability in SVL, we introduced two new statements,
“property” and “check”, which increase the readability and good structure of SVL scripts by
allowing to define and verify properties, each of which is given a name, instantiable parameters, an
informal textual description, and (optionally) an expected truth value.

• We updated several demo examples of CADP in order to illustrate the above extensions.

6.4.3. On-the-Fly Test Generation
Participants: Hubert Garavel, Radu Mateescu, Wendelin Serwe.
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In the context of the collaboration with STMicroelectronics, we study techniques for testing if a (hardware)
implementation is conform to a formal model described in LNT. Our approach is inspired by the theory of
conformance testing [62], as implemented for instance in TGV [53] and JTorX [33]. We have developed two
prototype tools to support this approach. The first tool implements a dedicated OPEN/CAESAR-compliant
compiler for the particular asymmetric synchronous product between the model and the test purpose. The
second tool, based on slightly extended generic components for graph manipulation (τ -compression, τ -
confluence reduction, determinization) and resolution of Boolean equation systems, generates the complete
test graph (CTG), which can be used to extract concrete test cases or to drive the test of the implementation.
The principal advantage of our approach compared to existing tools is the use of LNT for describing test
purposes, which facilitates the manipulation of data values.

In 2014, we developed a third prototype tool that takes as input a CTG and extracts either a single test case
(randomly chosen or the first encountered one), or the set of all test cases. This prototype tool was used in the
case study with STMicroelectronics (see § 6.5.1).

The test-generation tool TGV has been streamlined by removing some obsolete options and replacing a large
part of its code by calls to the standard CADP libraries. TGV has been made faster, it now supports the latest
version of the AUT format, and ensures that test purposes provided in the BCG format are deterministic. The
manual page has been updated and completed.

6.4.4. Other Component Developments
Participants: Soraya Arias, Hubert Garavel, Frédéric Lang, Radu Mateescu.

The AUT textual format for CADP for storing LTSs was extended to support recent languages (such as LNT
and the PseuCo language developed at Saarland University) that manipulate character-string values. The AUT
format, which was defined in the late 80s, did not support such values. A new version 2014 of the AUT format
has been defined, which solves this problem and maintains backward compatibility. All the CADP tools that
read or write AUT files have been updated accordingly.

The BCG format of CADP for storing LTSs has been upgraded with the advent of a new version 1.2, which
replaces version 1.1 released in 2009. New predefined types have been added to BCG to express the difference
between unsigned and signed integers, and between character strings and untyped raw-data values. The new
version of the BCG format is also more compact and now uses variable-length encoding for strings. The rules
for label parsing of the BCG_WRITE interface have been extended, and BCG_IO now supports version 2014
of the AUT format. The intrinsic difficulty of these changes was to preserve the backward compatibility with
the BCG files generated over the last twenty years.

To simplify the installation of CADP on Windows systems, we studied an alternative execution environment
based on Gnuwin32 and MinGW/Msys rather than Cygwin. Preliminary changes have been brought to CADP
scripts to undertake such a migration.

6.5. Real-Life Applications and Case Studies
6.5.1. ACE Cache Coherency Protocol

Participants: Abderahman Kriouile, Radu Mateescu, Wendelin Serwe.

In the context of a CIFRE convention with STMicroelectronics, we study system-level cache coherency, a
major challenge faced in the current System-on-Chip architectures. Because of their increasing complexity
(mainly due to the significant number of computing units), the validation effort using current simulation-based
techniques grows exponentially. As an alternative, we study formal verification.
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We focused on the ACE (AXI Coherency Extensions) cache coherency protocol, a system-level coherency
protocol proposed by ARM [29]. In previous years, we developed a formal LNT model (about 3, 400
lines of LNT) of a system consisting of an ACE-based cache coherent interconnect, processors, and a
main memory. The model is parametric and can be instantiated with different configurations (number of
processors, number of cache lines, number of memory lines) and different sets of supported elementary ACE
operations (currently, a representative subset of 15 operations), including an abstract operation that represents
any other ACE operation. We handled the global requirements of the ACE specification using a constraint
oriented programming style, i.e., by representing each global requirement as a dedicated process observing the
global behavior and inhibiting incorrect executions. We also specified temporal properties expressing cache
coherence, data integrity, and successful completion of each transaction. Note that the former property required
to transform state-based properties into action-based ones, by adding information about the cache state to the
actions executed by the cache.

In 2014, we exploited the formal model to improve the validation of the architecture under design at
STMicroelectronics. In a first step, we studied the sanity (soundness and completeness) of an industrial
interface verification unit, consisting of a list of so-called formal checks. After modeling each check in LNT,
we used the BISIMULATOR tool to verify that each check is an overapproximation of the corresponding
projection of the formal model. When we tried to establish that the parallel composition of all checks is an
overapproximation of the projection of the formal model, we discovered a missing check (a particular channel
did not occur in any of the checks).

In a second step, we studied the derivation of system level test cases, using a two-phase approach:

• In the first phase, abstract test cases were extracted automatically from the formal model using a
prototype tool (see § 6.4). To circumvent the complexity of extracting test cases from the complete
model, we proposed an iterative approach based on the automatic selection of a comprehensive set
of interesting scenarios leading to LTSs of tractable size. The selection of the interesting scenarios
relies on the counterexamples provided by the EVALUATOR model checker for the properties of
coherence and data integrity.

• In the second phase, the abstract test cases were translated into the input format of an industrial
test bench in charge of refining them into concrete test cases to be executed on the RTL (Register
Transfer Level) description of the architecture under study. Experiments with manually translated
abstract test cases led to the early discovery of bugs in commercial verification blocks, which could
therefore be corrected before their use became critical in the development process.

The tests derived from the formal model increased the coverage of problematic features of some blocks used in
the architecture. In particular, our approach was able to detect a limitation concerning data integrity 20 months
before it was confirmed by classical methods, and our methodology provides all the scenarios triggering the
limitation.

This work led to a publication accepted in an international conference [15]. Also, a large Petri net derived
from our LNT model was provided as benchmark example for the Model Checking Contest.

6.5.2. Formal Verification of BPMN Processes
Participants: Radu Mateescu, Gwen Salaün, Lina Ye.

A business process is a set of structured, related activities that aims at fulfilling a specific organizational goal
for a customer or market. An important metric when developing a business process is its degree of parallelism,
i.e., the maximum number of tasks that are executable in parallel in that process. The degree of parallelism
determines the peak demand on tasks, providing a valuable guide for the problem of resource allocation in
business processes.

In 2014, we investigated how to automatically measure the degree of parallelism for business processes,
described using the BPMN standard notation. To this aim, we defined a formal model for BPMN processes
in terms of LTSs, which are obtained through an encoding in LNT. We then proposed an approach for
automatically computing the degree of parallelism by using model checking of parameterized MCL formulas
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and dichotomic search. We developed a prototype tool for automating this check and we applied it successfully
to more than one hundred BPMN processes.

This work led to a publication in an international conference [16].

6.5.3. Stability of Asynchronously Communicating Systems
Participants: Gwen Salaün, Lina Ye.

Analyzing communicating systems that interact asynchronously via reliable FIFO buffers is an undecidable
problem. A typical approach is to check whether the system is bounded, and if not, the corresponding state
space can be made finite by limiting the presence of communication cycles in behavioral models or by fixing
buffer sizes.

We followed a different approach, which aims at analyzing communicating systems without restricting them
by imposing any arbitrary bounds. These systems are likely to be unbounded and therefore result in infinite
state spaces. We introduce a notion of stability and prove that once the system is stable for a specific buffer
bound (called stability bound), it remains stable whatever larger bounds are chosen for the buffers. This enables
us to check certain properties on the (finite-state) system obtained for the stability bound and to ensure that
the system will preserve them whatever larger bounds are used for buffers.

We have also proven that computing the stability bound is in general undecidable, and we proposed a semi-
algorithm that successfully computes the stability bounds for many typical examples of communicating
systems using heuristics and equivalence checking. This work is described in a research report [27].

6.5.4. Deployment and Reconfiguration Protocols for Cloud Applications
Participants: Rim Abid, Gwen Salaün.

In the context of the OpenCloudware project (see § 8.1.1.1), we collaborate with Noël de Palma and Fabienne
Boyer (University Joseph Fourier), Xavier Etchevers and Thierry Coupaye (Orange Labs) in the field of cloud
computing applications, which are complex distributed applications composed of interconnected software
components running on distinct virtual machines (VMs). Setting up, (re)configuring, and monitoring these
applications involve intricate management protocols, which fully automate these tasks while preserving
application consistency as well as some key architectural invariants.

In 2014, we extended the specification of the self-deployment protocol to support VM failures. This led
to a publication in an international conference [11], of which an extended version is under preparation for
submission to an international journal.

We also worked on the dynamic reconfiguration of cloud applications. As a first attempt, we proposed to design
this protocol using a publish-subscribe communication model [32]. In 2014, we improved the protocol to also
support VM failures, and drastically validated the corresponding LNT specification using model checking. A
paper presenting these results was submitted to an international journal. In parallel, we studied a version of this
protocol where the different participants interact asynchronously via FIFO buffers. This led to a publication in
an international conference [10].

As a new line of work, we undertook the study of controller synthesis techniques for the coordination of
autonomic managers in asynchronous environments. Our approach relies on an encoding into LNT and on
the application of several operations on automata (synchronous products, hiding, reduction) for synthesizing
the corresponding controller using CADP tools. We also proposed automated techniques for generating Java
code from an abstract model of the controller. For validation purposes, we applied our approach to real-world
three-tier Web applications and showed that the introduction of a controller allows one to avoid erroneous
situations due to the absence of coordination between autonomic managers.

6.5.5. Networks of Programmable Logic Controllers
Participants: Hubert Garavel, Fatma Jebali, Jingyan Jourdan-Lu, Frédéric Lang, Eric Léo, Radu Mateescu.
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In the context of the Bluesky project (see § 8.1.2.1), we study the software applications embedded on the PLCs
(Programmable Logic Controllers) manufactured by Crouzet Automatismes. One of the objectives of Bluesky
is to enable the rigorous design of complex control applications running on several PLCs connected by a
network. Such applications are instances of GALS (Globally Asynchronous, Locally Synchronous) systems
composed of several synchronous automata embedded on individual PLCs, which interact asynchronously
by exchanging messages. A formal analysis of these systems can be naturally achieved by using the formal
languages and verification techniques developed in the field of asynchronous concurrency.

For describing the applications embedded on individual PLCs, Crouzet provides a dataflow language with
graphical syntax and synchronous semantics, equipped with an ergonomic user-interface that facilitates the
learning and use of the language by non-experts. To equip the PLC language of Crouzet with functionalities
for automated verification, the solution adopted in Bluesky was to translate it into GRL (see § 6.1.3), which
enables the connection to testing and verification tools covering the synchronous and asynchronous aspects.

In 2014, we have developed a set of GRL libraries implementing about 40 of the function blocks present in the
PLC programming tool of Crouzet, to facilitate the integration of GRL in the PLC software design process.
These function blocks include (among others) logic and comparison functions, timers, triggers, and counters.
These GRL libraries have been used to model large applications provided by Crouzet. The GRL2LNT and
GRL.OPEN tools (see § 6.1.3) provide a direct connection to all verification functionalities of CADP, in
particular model checking and equivalence checking.

Regarding model checking, we have studied existing work in the verification of synchronous systems and
GALS systems. We have identified a set of typical patterns of temporal properties (e.g., deadlocks, safety,
liveness) relevant for GALS systems. These property patterns have been specified using MCL and checked on
a set of feature-rich GRL examples using GRL.OPEN and EVALUATOR.

Regarding equivalence checking, the purpose is to compare the behavior of a GALS system with its service,
which represents its desired observable behavior, modulo a suitable equivalence relation. We have studied
existing work in equivalence checking for GALS systems and we have investigated how to formally define the
expected service of a GALS system at the appropriate level of expressiveness and abstraction, which requires
a careful identification of the observable actions corresponding to the interactions between the GALS system
and its physical environment. We have modeled several examples of GALS systems in GRL, and experimented
the definition of appropriate services and their usage for equivalence checking by means of GRL.OPEN and
BISIMULATOR.

The validation approach we promote, together with our colleagues from the LCIS laboratory (Valence) in the
Bluesky project, led to a common publication in a national conference [21].

6.5.6. EnergyBus Standard for Connecting Electric Components
Participants: Hubert Garavel, Wendelin Serwe.

The EnergyBus 8 is an upcoming industrial standard for electric power transmission and management,
based on the CANopen field bus. It is developed by a consortium assembling all major industrial players
(such as Bosch, Panasonic, and Emtas) in the area of light electric vehicles (LEV); their intention is to
ensure interoperability between all electric LEV components. At the core of this initiative is a universal plug
integrating a CAN-Bus 9 with switchable power lines. The central and innovative role of the EnergyBus is to
manage the safe electricity access and distribution inside an EnergyBus network.

In the framework of the European FP7 project SENSATION (see § 8.2.1.1) a formal specification in LNT of
the main EnergyBus protocols is being developed by Alexander Graf-Brill and Holger Hermanns at Saarland
University [48], with the active collaboration of CONVECS.

In 2014, our joint work with Saarland University on the modeling, verification, and test case generation for
the EnergyBus standard led to a common publication [13].

8http://www.energybus.org
9http://www.can-cia.org

http://www.energybus.org
http://www.can-cia.org
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6.5.7. Graphical User-Interfaces and Plasticity
Participants: Hubert Garavel, Frédéric Lang, Raquel Oliveira.

In the context of the Connexion project (see § 8.1.1.2) and in close collaboration with Gaëlle Calvary, Eric
Ceret, and Sophie Dupuy-Chessa (IIHM team of the LIG laboratory), we study the formal description and
validation of graphical user-interfaces using the most recent features of the CADP toolbox. The case study
assigned to LIG in this project is a prototype graphical user-interface [36] designed to provide human operators
with an overview of a running nuclear plant. The main goal of the system is to inform the operators about
alarms resulting from faults, disturbances, or unexpected events in the plant. Contrary to conventional control
rooms, which employ large desks and dedicated hardware panels for supervision, this new-generation interface
uses standard computer hardware (i.e., smaller screen(s), keyboard, and mouse), thus raising challenging
questions on how to best provide synthetic views of the plant status. Another challenge is to introduce plasticity
in such interface, so as to enable several supervision operators, including mobile ones outside of the control
room, to get accurate information in real time.

We formally specified this new-generation interface in LNT, encompassing not only the usual components
traditionally found in graphical user-interfaces, but also a model of the physical world (namely, a nuclear
reactor with various fault scenarios) and a cognitive model of a human operator in charge of supervising the
plant. Also, several desirable properties of the interface have been expressed in MCL and verified on the LNT
model using CADP. This led to a publication in an international conference [17].

In 2014, we continued our activity along several directions. The LNT specification was matured in various
respects. As a result of several interactions with EDF, the specification was enhanced with a more realistic
representation of the plant (currently 5, 358 lines of LNT code). Besides, new desirable properties of the
user-interfaces emerged with the evolution of the formal model, making a total of seven complex properties
formally specified in MCL.

We initiated an integration of our formal model with an industrial control room prototype, provided by a
partner in the project. To this aim, several improvements were done in the formal specification, and the
integration is currently in progress.

We started to address the introduction of plasticity in the formal specification, a challenge that was identified
in 2013. Plasticity is the capacity of a user-interface to withstand variations of its context of use (i.e., platform,
user, environment) while preserving usability. We proposed two approaches to introduce plasticity in the
analysis. The first one introduces in the formal model a representation of a plasticity engine (responsible for
user-interfaces adaptation) and applies model checking to verify its properties. The second approach consists in
formally specifying several versions of the user-interfaces, derived from adaptation, and applying equivalence
checking to verify similarity relations on the user-interface models.

6.5.8. Fault-Tolerant Routing for Network-on-Chip Architectures
Participant: Wendelin Serwe.

Fault-tolerant architectures provide adaptivity for on-chip communications, but also increase the complexity of
the design, so that formal verification techniques are needed to check their correctness. In collaboration with
Chris Myers and Zhen Zhang (University of Utah, USA), we studied an extension of the link-fault tolerant
Network-on-Chip (NoC) architecture introduced by Wu et al [67] that supports multiflit wormhole routing.

To keep the state space manageable, the formal LNT model of the routing algorithm was constructed in several
steps, applying different abstractions (structural and related to data). This modeling process led to several
insights. First, it led to the discovery of a package leakage path that could lead to the complete loss of a
packet and a deadlock. This error in the design of an arbiter was corrected in the subsequent models. Second,
a buffering capacity in an arbiter was found to be crucial; this insight also led to a redesign of the arbiters. The
resultant changes on the router and arbiter models uncovered interesting symmetries. Finally, we studied how
deadlock freedom and tolerance of a single-link fault can be verified for a NoC architecture.

This work led to a publication in an international conference [20].
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6.5.8.1. Other Case Studies

The demo examples of CADP, which have been progressively accumulated since the origins of the toolbox, are
a showcase for the multiple capabilities of CADP, as well as a test bed to assess the new features of the toolbox.
In 2014, the effort to maintain and enhance these demos has been pursued. The progressive migration to LNT
has continued, by translating certain demos from LOTOS to LNT. Many demos have been enriched with value-
passing temporal formulas that illustrate the conciseness and expressiveness of MCL and the capabilities of the
EVALUATOR 4 model checker. Finally, many demos have been shortened and made more readable by using
the new features of SVL, especially the “property” and “|=” statements that allow formulas to be gathered
in a single SVL file rather than disseminated in a collection of MCL or XTL files.

7. Bilateral Contracts and Grants with Industry

7.1. Bilateral Grants with Industry
Participants: Hubert Garavel, Abderahman Kriouile, Radu Mateescu, Wendelin Serwe.

Abderahman Kriouile is supported by a CIFRE PhD grant (from March 2012 to March 2015) from STMi-
croelectronics (Grenoble) on the verification of cache coherency in systems on chip (see § 6.5.1), under the
supervision of Guilhem Barthes (STMicroelectronics), Christophe Chevallaz (STMicroelectronics), Grégory
Faux (STMicroelectronics), Radu Mateescu (CONVECS), Wendelin Serwe (CONVECS), and Massimo Zen-
dri (STMicroelectronics).

8. Partnerships and Cooperations

8.1. National Initiatives
8.1.1. FSN (Fonds national pour la Société Numérique)
8.1.1.1. OpenCloudware

Participants: Rim Abid, Hugues Evrard, Frédéric Lang, Gwen Salaün [correspondent], Lina Ye.

OpenCloudware 10 is a project funded by the FSN. The project is led by France Telecom / Orange Labs
(Meylan, France) and involves 18 partners (among which Bull, OW2, Thalès, Inria, etc.). OpenCloudware
aims at providing an open software platform enabling the development, deployment and administration of
cloud applications. The objective is to provide a set of integrated software components for: (i) modeling
distributed applications to be executed on cloud computing infrastructures; (ii) developing and constructing
multi-tier virtualized applications; and (iii) deploying and administrating these applications (PaaS platform)
possibly on multi-IaaS infrastructures.

OpenCloudware started in January 2012 for three years and nine months. The main contributions of CON-
VECS to OpenCloudware (see § 6.5.4) are the formal specification of the models, architectures, and pro-
tocols (self-deployment, dynamic reconfiguration, self-repair, etc.) underlying the OpenCloudware platform,
the automated generation of code from these specifications for rapid prototyping purposes, and the formal
verification of the aforementioned protocols.

8.1.1.2. Connexion
Participants: Hubert Garavel [correspondent], Frédéric Lang, Raquel Oliveira.

10http://www.opencloudware.org

http://www.opencloudware.org
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Connexion 11 (COntrôle commande Nucléaire Numérique pour l’EXport et la rénovatION) is a project funded
by the FSN, within the second call for projects “Investissements d’Avenir — Briques génériques du logiciel
embarqué”. The project, led by EDF and supported by the Pôles de compétitivité Minalogic, Systematic,
and Pôle Nucléaire Bourgogne, involves many industrial and academic partners, namely All4Tech, Alstom
Power, ArevA, Atos Worldgrid, CEA-LIST, CNRS/CRAN, Corys Tess, ENS Cachan, Esterel Technologies,
Inria, LIG, Predict, and Rolls-Royce. Connexion aims at proposing and validating an innovative architecture
dedicated to the design and implementation of control systems for new nuclear power plants in France and
abroad.

Connexion started in April 2012 for four years. In this project, CONVECS will assist another LIG team, IIHM,
in specifying human-machine interfaces formally using the LNT language and in verifying them using CADP
(see § 6.5.7).

8.1.2. Competitivity Clusters
8.1.2.1. Bluesky for I-Automation

Participants: Hubert Garavel, Fatma Jebali, Jingyan Jourdan-Lu, Frédéric Lang, Eric Léo, Radu Mateescu
[correspondent].

Bluesky for I-Automation is a project funded by the FUI (Fonds Unique Interministériel) within the Pôle
de Compétitivité Minalogic. The project, led by Crouzet Automatismes (Valence), involves the SMEs (Small
and Medium Enterprises) Motwin and VerticalM2M, the LCIS laboratory of Grenoble INP, and CONVECS.
Bluesky aims at bringing closer the design of automation applications and the Internet of things by providing
an integrated solution consisting of hardware, software, and services enabling a distributed, Internet-based
design and development of automation systems. The automation systems targeted by the project are networks
of programmable logic controllers, which belong to the class of GALS (Globally Asynchronous, Locally
Synchronous) systems.

Bluesky started in September 2012 for three years. The main contributions of CONVECS to Bluesky (see
§ 6.1.3 and § 6.5.5) are the definition of GRL, the formal pivot language for describing the asynchronous
behavior of logic controller networks, and the automated verification of the behavior using compositional
model checking and equivalence checking techniques.

8.1.3. Other National Collaborations
Additionally, we collaborated in 2014 with the following Inria project-teams:

• OASIS (Inria Sophia-Antipolis – Méditerranée): Eric Madelaine and Ludovic Henrio,

• ESTASYS (Inria Rennes – Bretagne Atlantique): Kevin Corre and Axel Legay,

• MEXICO (Inria Saclay – Île-de-France): Alban Linard.

Beyond Inria, we had sustained scientific relations with the following researchers:

• Gaëlle Calvary and Sophie Dupuy-Chessa (LIG, Grenoble),

• Fabrice Kordon and Lom Messan Hillah (LIP6, Paris),

• Alexandre Hamez (ISAE, Toulouse),

• Noël De Palma and Fabienne Boyer (LIG, Grenoble),

• Xavier Etchevers (Orange Labs, Meylan),

• Matthias Güdemann (Systerel, Aix-en-Provence),

• Meriem Ouederni (IRIT, Toulouse),

• Christophe Deleuze, Ioannis Parissis, and Mouna Tka Mnad (LCIS, Valence),

• Pascal Poizat (LIP6, Paris).

11http://www.cluster-connexion.fr

http://www.cluster-connexion.fr
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8.2. European Initiatives
8.2.1. FP7 & H2020 Projects
8.2.1.1. SENSATION

Participants: Hubert Garavel [correspondent], Radu Mateescu, Jose Ignacio Requeno, Wendelin Serwe.

SENSATION 12 (Self ENergy-Supporting Autonomous computaTION) is a European project no. 318490
funded by the FP7-ICT-11-8 programme. It gathers 9 participants: Inria (ESTASYS and CONVECS project-
teams), Aalborg University (Denmark), RWTH Aachen and Saarland University (Germany), University of
Twente (The Netherlands), GomSpace (Denmark), and Recore Systems (The Netherlands). The main goal of
SENSATION is to increase the scale of systems that are self-supporting by balancing energy harvesting and
consumption up to the level of complete products. In order to build such Energy Centric Systems, embedded
system designers face the quest for optimal performance within acceptable reliability and tight energy bounds.
Programming systems that reconfigure themselves in view of changing tasks, resources, errors, and available
energy is a demanding challenge.

SENSATION started on October 1st, 2012 for three years. CONVECS contributes to the project regarding the
extension of formal languages with quantitative aspects (see § 6.3.1), studying common semantic models for
quantitative analysis, and applying formal modeling and analysis to the case studies provided by the industrial
partners (see § 6.5.6).

8.2.2. Collaborations with Major European Organizations
The CONVECS project-team is member of the FMICS (Formal Methods for Industrial Critical Systems)
working group of ERCIM 13. R. Mateescu was the chairman of the FMICS working group until November 1st,
2014. H. Garavel is member of the FMICS board, in charge of dissemination actions.

H. Garavel was appointed to a new Working Group within Informatics Europe: “Parallel Computing (Super-
computing) Education in Europe: State-of-Art”. This is a relatively small working group (about 10 people)
with the following missions: to show the need for urgent changes in higher education in the area of compu-
tational sciences, to compose a survey of the current landscape of parallel computing and supercomputing
education in Europe with respect to different universities and countries, and to prepare a set of recommen-
dations on how to bring ideas of parallel computing and supercomputing into higher educational systems of
European countries.

8.2.3. Other European Collaborations
In addition to our partners in aforementioned contractual collaborations, we had scientific relations in 2014
with several European universities and research centers, including:

• Saarland University (Alexander Graf-Brill, Holger Hermanns, and Felix Freiberger),

• RWTH Aachen (Joost-Pieter Katoen and Xiaoxiao Yang),

• Oxford University (Ernst-Moritz Hahn and Marta Kwiatkowska),

• University of Birmingham (Dave Parker),

• Technical University of Eindhoven (Anton Wijs),

• University of Twente (Marieke Huisman and Jaco van de Pol),

• University of Málaga (Carlos Canal, Francisco Duran and Ernesto Pimentel), and

• Brandenburg University of Technology Cottbus - Senftenberg (Monika Heiner).

Our partnership with Saarland University was sustained by the Humboldt Forschungspreis received by
H. Garavel, who continued his regular visits to Saarland University.

12http://sensation-project.eu/
13http://fmics.inria.fr

http://sensation-project.eu/
http://fmics.inria.fr


22 Activity Report INRIA 2014

8.3. International Initiatives
8.3.1. Inria International Labs

H. Garavel is a member of IFIP (International Federation for Information Processing) Technical Committee 1
(Foundations of Computer Science) Working Group 1.8 on Concurrency Theory chaired successively by Luca
Aceto and Jos Baeten.

8.3.2. Other International Collaborations
In 2014, we had scientific relations with several universities abroad, including:

• University of California at Santa Barbara, USA (Tevfik Bultan),
• University of Utah, USA (Chris Myers and Zhen Zhang), and
• Universidad Nacional de Cordoba, Argentina (Pedro d’Argenio).

8.4. International Research Visitors
8.4.1. Visits of International Scientists

• Alexandre Hamez (ISAE, Toulouse) visited us on March 26-28, 2014. He gave a seminar entitled
“Symbolic Model Checking and Hierarchical Set Decision Diagrams”.

• Chris Myers (University of Utah, USA) visited us from July 7–11, 2014. He gave a talk entitled
“Genetic Design Automation” on July 8, 2014.

• The annual CONVECS seminar was held in Herbelon (France) on June 23-25, 2014. The following
invited scientists attended the seminar:

– Laurence Pierre (TIMA, Grenoble, France) gave on June 23, 2014 a talk entitled “Verifica-
tion of Correctness and Safety Requirements for SoC Models”.

– Matthias Güdemann (Systerel, Aix-en-Provence) gave on June 24, 2014 a talk entitled
“Industrial Formal Methods”.

– Lom Messan Hillah (LIP6, Paris) gave on June 25, 2014 a talk entitled “Formal Methods in
Model-Driven Development and Model-Driven Development in Formal Methods: Practice
Makes a Better Bridge”.

9. Dissemination

9.1. Promoting Scientific Activities
9.1.1. Scientific events organisation
9.1.1.1. General chair, scientific chair

• G. Salaün was general chair for SEFM’2014 (12th International Conference on Software Engineer-
ing and Formal Methods), Grenoble, France, September 1–5, 2014.

9.1.1.2. Member of the organizing committee
• L. Ye was publicity chair for SEFM’2014. R. Abid and H. Evrard were members of the organizing

committee for SEFM’2014.
• W. Serwe was publicity chair for FMICS’2014 (19th International Workshop on Formal Methods

for Industrial Critical Systems), Florence, Italy, September 11–12, 2014.

9.1.2. Scientific events selection
9.1.2.1. Chair of conference program committee

• G. Salaün was programme committee chair for SEFM’2014.
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• F. Lang was programme committee chair for FMICS’2014.

9.1.2.2. Member of the conference program committee

• G. Salaün was programme committee member for GRAPHITE’2014 (3rd Workshop on Graph
Inspection and Traversal Engineering), Grenoble, France, April 5, 2014.

• G. Salaün was programme committee member for ORCHOR’2014 (International Workshop on
Service Orchestration and Choreography for the Future Internet), Anchorage, Alaska, June 30,
2014.

• G. Salaün was programme committee member for WWV’2014 (International Workshop on Auto-
mated Specification and Verification of Web Systems), Vienna, Austria, July 18, 2014.

• H. Garavel was programme committee member for SEFM’2014.

• G. Salaün was programme committee member for FOCLASA’2014 (13th International Workshop
on Foundations of Coordination Languages and Self-Adaptive Systems), Rome, Italy, September 6,
2014.

• G. Salaün was programme committee member for FACS’2014 (11th International Symposium on
Formal Aspects of Component Software), Bertinoro, Italy, September 10–12, 2014.

• R. Mateescu and W. Serwe were programme committee members for FMICS’2014.

• W. Serwe was a program committee member for the track on “Prototyping, Validation, Verification,
Modeling and Simulation” of VLSI-SOC’2014 (22nd IFIP/IEEE International Conference on Very
Large Scale Integration), Playa del Carmen, Mexico, October 6–8, 2014.

9.1.2.3. Reviewer

• H. Evrard reviewed articles submitted to FOCLASA’2014 and TACAS’2015 (21th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems).

• F. Jebali reviewed articles submitted to AVOCS’2014 (14th International Workshop on Automated
Verification of Critical Systems).

• A. Kriouile reviewed articles submitted to SAC-SVT’2015 (30th ACM/SIGAPP Symposium on
Applied Computing — Software Verification Track).

• F. Lang reviewed articles submitted to TACAS’2015.

• R. Mateescu reviewed articles submitted to AVOCS’2014, SEFM’2014, and TACAS’2015.

• G. Salaün reviewed articles submitted to WETICE-PASCS’2014 (23rd IEEE International Confer-
ence on Enabling Technologies: Infrastructure for Collaborative Enterprises — Track on Privacy
and Accountability for Software and Cloud Services).

• W. Serwe reviewed articles submitted to AVOCS’2014, DATE’2014 (Design, Automation & Test in
Europe), and TACAS’2015.

• L. Ye reviewed articles submitted to SEFM’2014, VALID’2014 (6th International Conference on
Advances in System Testing and Validation Lifecycle), SAC-SVT’2015, and FSEN’2015 (6th IPM
International Conference on Fundamentals of Software Engineering).

9.1.3. Journal
9.1.3.1. Member of the editorial board

• H. Garavel is an editorial board member of STTT (Springer International Journal on Software Tools
for Technology Transfer).

• G. Salaün is an editorial board member of SOCA (Springer International Journal on Service
Oriented Computing and Applications).

9.1.3.2. Reviewer

• R. Mateescu was reviewer for ACM TECS (Transactions on Embedded Computing Systems) and
STTT.
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• J. I. Requeno was reviewer for IEEE TC (Transactions on Computers).

• G. Salaün was reviewer for JLAMP (Journal of Logical and Algebraic Methods in Programming),
JISA (Journal of Internet Services and Applications), IEEE TSE (Transactions on Software Engi-
neering), and IJWET (International Journal of Web Engineering and Technology).

9.1.4. Software Dissemination and Internet Visibility
The CONVECS project-team distributes several software tools: the CADP toolbox (see § 5.1), the TRAIAN
compiler (see § 5.2), the PIC2LNT translator (see § 5.3), and the PMC model checker (see § 5.4).

In 2014, the main facts are the following:

• We prepared and distributed twelve successive versions (2014-a to 2014-l) of CADP.

• We were requested to grant CADP licenses for 425 different computers in the world.

The CONVECS Web site 14 was updated with scientific contents, announcements, publications, etc.

By the end of December 2014, the CADP forum 15, opened in 2007 for discussions regarding the CADP
toolbox, had over 320 registered users and over 1570 messages had been exchanged.

Also, five large Petri nets derived from our LNT models were provided as benchmark examples for the 2014
edition of the Model Checking Contest.

Other research teams took advantage of the software components provided by CADP (e.g., the BCG and
OPEN/CAESAR environments) to build their own research software. We can mention the following develop-
ments:

• The IMCReo tool to reason about QoS in Stochastic Reo connectors [58], [59]

• The Alvis virtual machine to execute formal models in the Alvis language [57]

• The Tomte tool for active learning of Mealy machines [30]

• The Vercors platform for verifying the correct composition of distributed components [52]

• The TLM.open tool connecting SystemC/TLM models to CADP [50]

• The REFINER tool for formal Verification of Model Transformations [65], [66]

• The ELOTON development environment for LOTOS specifications [68]

Other teams also used the CADP toolbox for various case studies:

• Model-based specification, implementation and testing of a software bus [61]

• Protocol conformance testing using active learning of Mealy machines [31]

• High-performance fractal coherence [64], [63]

• Verification of models reverse engineered from smart-card readers [34]

9.1.5. Awards and Distinctions
H. Garavel is an invited professor at Saarland University (Germany) as a holder of the Gay-Lussac Humboldt
Prize.

14http://convecs.inria.fr
15http://cadp.inria.fr/forum.html

http://convecs.inria.fr
http://cadp.inria.fr/forum.html
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9.1.6. Lectures and Invited Conferences
• H. Garavel gave an invited talk entitled “Trois décennies de réussite en méthodes formelles” at the

Journées MFDL/MTV2 (Méthodes Formelles pour le Développement de Logiciels/Méthodes de Test
pour la Vérification et la Validation) held on January 14, 2014 in Grenoble, France.

• H. Garavel and R. Mateescu gave a talk entitled “Analyse de traces par model checking / Trace
Analysis using Model Checking” at the PIMLIG seminar “Traces dans tous leurs états” held on
January 22, 2014 in Grenoble, France.

• G. Salaün gave a talk entitled “On the Verification of Asynchronously Communicating Systems” on
February 18, 2014 in Málaga, Spain.

• G. Salaün gave a talk entitled “Verification of Asynchronously Communicating Systems” on October
2nd, 2014 in Clermont-Ferrand, France.

• R. Mateescu gave an invited talk entitled “Walking Back and Forth in Labelled Transition Systems”
at the GRAPHITE’2014 workshop held on April 5, 2014, in Grenoble, France.

• H. Garavel gave a talk entitled “Benchmarks and Benchmarking: The Model Checking Contest” at
the 20 years of TACAS workshop and celebration held on April 8, 2014 in Grenoble, France.

• H. Garavel gave a talk entitled “Real Time without Clocks” on June 6, 2014 at Saarland University,
Saarbrücken, Germany.

• H. Garavel gave a talk entitled “Reconciling Concurrency Theory with Other Branches of Computer
Science” at the IFIP WG 1.8 Research Seminar on Open Problems in Concurrency Theory held on
June 18–21, 2014 in Bertinoro (Forlì), Italy.

• R. Mateescu gave an invited talk entitled “Mu-Calculus Property-Dependent Reductions
for Divergence-Sensitive Branching Bisimilarity” at the WS-FMDS’2014 workshop held on
September 2, 2014 in Grenoble, France.

• R. Mateescu gave a talk entitled “Two Decades of Formal Methods for Industrial Critical Systems”
at the ERCIM 25th anniversary held on October 23–24, 2014, in Pisa, Italy.

• F. Jebali gave a talk entitled “A Step Towards Reconciling GALS Industrial Design with Formal
Verification” on September 11, 2014 at the 11th LASER Summer School on Software Engineering
held on September 7–13, 2014 in Elba Island, Italy.

• F. Lang gave a talk entitled “Partial Model Checking Using Labelled Transition Systems and Boolean
Equation Systems” to a panel of 1st year students of Ecole Normale Supérieure de Cachan during
their visit to the LIG laboratory on December 9, 2014.

9.2. Teaching - Supervision - Juries
9.2.1. Teaching

CONVECS is a host team for the computer science master entitled “Mathématiques, Informatique, spécialité :
Systèmes et Logiciels”, common to Grenoble INP and University Joseph Fourier.

In 2014, we carried out the following teaching activities:
• G. Salaün is co-responsible of the ISI (Ingéniérie des Systèmes d’Information) department of

ENSIMAG since September 1, 2011.
• F. Lang and W. Serwe gave a course on “Spécification et vérification de systèmes concurrents et

temps-réel” to the third year computer science engineering students of ENSIMAG (18 hours).
• G. Salaün gave a course on “Programmation orientée-objet” to the second year computer science

engineering students of ENSIMAG (18 hours).
• G. Salaün gave a course on “Théorie des langages” to the first year computer science engineering

students of ENSIMAG (18 hours).
• R. Oliveira served as a teaching assistant in a course on “Bases de Données”, given by Aurélien

Faravelon to the first year computer science engineering students of IUT2 (25 hours).
• R. Oliveira served as a teaching assistant in a course on “Algorithmique et programmation”, given

by Vanda Luengo to the first year computer science engineering students of IUT (40 hours).
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9.2.2. Juries
• G. Salaün was external reviewer for José Antonio Mateo Cortés’s PhD thesis, entitled “Verification

and Validation of Web Service Compositions using Formal Methods”, defended at Universidad de
Castilla La Mancha, Spain, on July 1st, 2014.

• G. Salaün was external reviewer for Diana Allam’s PhD thesis, entitled “Enforcing Loose Coupling
and Substitution Principles in an Object-Oriented Framework for Web Services”, defended at Ecole
des Mines, Nantes, France, on July 10, 2014.

• R. Mateescu was external reviewer for Ala Eddine Ben Salem’s PhD thesis, entitled “Improving the
Model Checking of Stutter-Invariant LTL Properties”, defended at Université Pierre et Marie Curie,
Paris, France, on September 25, 2014.

• G. Salaün was external reviewer for Lakhdar Akroun’s PhD thesis, entitled “Décidabilité et complex-
ité de la relation de simulation des services Web orientés données”, defended at Université Blaise
Pascal, Clermont-Ferrand, France, on December 8, 2014.

• G. Salaün was external reviewer for Dimitris Vekris’s PhD thesis, entitled “Vérification de spéci-
fications EB3 à l’aide de techniques de model checking”, defended at Université Paris-Est Créteil,
France, on December 10, 2014.

9.3. Popularization
H. Garavel participates to the committee in charge of organizing the Aerospace Valley series of industrial
conferences on formal methods. The third conference 16, devoted to theorem proving, held on February 4
in Toulouse and retransmitted by video-conference in Grenoble, attracted over 100 participants from industry
and academia.

The fourth conference 17, devoted to model checking, held on October 16 in Toulouse and retransmitted
by video-conference in Grenoble and Saclay, attracted over 120 participants from industry and academia.
H. Garavel gave a talk entitled “Présentation de l’outil CADP”. A. Kriouile gave a talk entitled “Application
de CADP à la vérification de matériel”. R. Mateescu gave a talk entitled “Introduction au model checking”.

9.4. Miscellaneous Activities
H. Evrard is a member of the council of the MSTII doctoral school.

H. Evrard and G. Salaün are members of the council of the LIG laboratory.

H. Garavel is a member of the LIG commission in charge of preparing candidates selected for recruitment
interviews at CNRS.

H. Garavel is a member of the operational committee of the EMSOC cluster (“Embedded System on Chip”)
within the Minalogic “pôle de compétitivité mondial”.

H. Garavel was a reviewer for various ongoing ANR (Agence Nationale de la Recherche) pre-propositions and
projects evaluated in 2014.

F. Lang is a member of the “commission du développement technologique”, which is in charge of selecting
R&D projects for Inria Grenoble - Rhône-Alpes.

E. Léo and W. Serwe are members of the “comité de centre” of Inria Grenoble - Rhône-Alpes.

R. Mateescu is the correspondent of the “Département des Partenariats Européens” for Inria Grenoble -
Rhône-Alpes.

G. Salaün is a member of the scientific council of Grenoble INP (Conseil scientifique de l’institut).

G. Salaün is a member of the MSTIC council of Grenoble-Alpes University (Conseil de pôle MSTIC).

16http://www.inria.fr/centre/grenoble/agenda/forum-methodes-formelles2
17http://projects.laas.fr/IFSE/FMF/J4/index.html

http://www.inria.fr/centre/grenoble/agenda/forum-methodes-formelles2
http://projects.laas.fr/IFSE/FMF/J4/index.html
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W. Serwe is “chargé de mission” for the scientific axis Formal Methods, Models, and Languages of the LIG
laboratory.

F. Lang is (together with Laurent Lefèvre from the AVALON Inria project-team) correspondent in charge of
the Inria Activity Report at Inria Grenoble - Rhône-Alpes.
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